83 research outputs found

    Enhancing public health response: a framework for topics and sentiment analysis of COVID-19 in the UK using Twitter and the embedded topic model

    Get PDF
    IntroductionTo protect citizens during the COVID-19 pandemic unprecedented public health restrictions were imposed on everyday life in the UK and around the world. In emergencies like COVID-19, it is crucial for policymakers to be able to gauge the public response and sentiment to such measures in almost real-time and establish best practices for the use of social media for emergency response.MethodsIn this study, we explored Twitter as a data source for assessing public reaction to the pandemic. We conducted an analysis of sentiment by topic using 25 million UK tweets, collected from 26th May 2020 to 8th March 2021. We combined an innovative combination of sentiment analysis via a recurrent neural network and topic clustering through an embedded topic model.ResultsThe results demonstrated interpretable per-topic sentiment signals across time and geography in the UK that could be tied to specific public health and policy events during the pandemic. Unique to this investigation is the juxtaposition of derived sentiment trends against behavioral surveys conducted by the UK Office for National Statistics, providing a robust gauge of the public mood concurrent with policy announcements.DiscussionWhile much of the existing research focused on specific questions or new techniques, we developed a comprehensive framework for the assessment of public response by policymakers for COVID-19 and generalizable for future emergencies. The emergent methodology not only elucidates the public’s stance on COVID-19 policies but also establishes a generalizable framework for public policymakers to monitor and assess the buy-in and acceptance of their policies almost in real-time. Further, the proposed approach is generalizable as a tool for policymakers and could be applied to further subjects of political and public interest

    Coalescing disparate data sources for the geospatial prediction of mosquito abundance, using Brazil as a motivating case study

    Get PDF
    One of the barriers to performing geospatial surveillance of mosquito occupancy or infestation anywhere in the world is the paucity of primary entomologic survey data geolocated at a residential property level and matched to important risk factor information (e.g., anthropogenic, environmental, and climate) that enables the spatial risk prediction of mosquito occupancy or infestation. Such data are invaluable pieces of information for academics, policy makers, and public health program managers operating in low-resource settings in Africa, Latin America, and Southeast Asia, where mosquitoes are typically endemic. The reality is that such data remain elusive in these low-resource settings and, where available, high-quality data that include both individual and spatial characteristics to inform the geospatial description and risk patterning of infestation remain rare. There are many online sources of open-source spatial data that are reliable and can be used to address such data paucity in this context. Therefore, the aims of this article are threefold: (1) to highlight where these reliable open-source data can be acquired and how they can be used as risk factors for making spatial predictions for mosquito occupancy in general; (2) to use Brazil as a case study to demonstrate how these datasets can be combined to predict the presence of arboviruses through the use of ecological niche modeling using the maximum entropy algorithm; and (3) to discuss the benefits of using bespoke applications beyond these open-source online data sources, demonstrating for how they can be the new “gold-standard” approach for gathering primary entomologic survey data. The scope of this article was mainly limited to a Brazilian context because it builds on an existing partnership with academics and stakeholders from environmental surveillance agencies in the states of Pernambuco and Paraiba. The analysis presented in this article was also limited to a specific mosquito species, i.e., Aedes aegypti, due to its endemic status in Brazil

    An Evaluation of the OpenWeatherMap API versus INMET Using Weather Data from Two Brazilian Cities: Recife and Campina Grande

    Get PDF
    Certain weather conditions are inadvertently related to increased population of various mosquitoes. In order to predict the burden of mosquito populations in the Global South, it is imperative to integrate weather-related risk factors into such predictive models. There are a lot of online open-source weather platforms that provide historical, current and future weather forecasts which can be utilised for general predictions, and these electronic sources serve as an alternate option for weather data when physical weather stations are inaccessible (or inactive). Before using data from such online source, it is important to assess the accuracy against some baseline measure. In this paper, we therefore evaluated the accuracy and suitability of weather forecasts of two parameters namely temperature and humidity from the OpenWeatherMap API (an online weather platform) and compared them with actual measurements collected from the Brazilian weather stations (INMET). The evaluation was focused on two Brazilian cites, namely, Recife and Campina Grande. The intention is to prepare an early warning model which will harness data from OpenWeatherMap API for mosquito prediction

    Temporal and Spatiotemporal Arboviruses Forecasting by Machine Learning: A Systematic Review

    Get PDF
    Arboviruses are a group of diseases that are transmitted by an arthropod vector. Since they are part of the Neglected Tropical Diseases that pose several public health challenges for countries around the world. The arboviruses' dynamics are governed by a combination of climatic, environmental, and human mobility factors. Arboviruses prediction models can be a support tool for decision-making by public health agents. In this study, we propose a systematic literature review to identify arboviruses prediction models, as well as models for their transmitter vector dynamics. To carry out this review, we searched reputable scientific bases such as IEE Xplore, PubMed, Science Direct, Springer Link, and Scopus. We search for studies published between the years 2015 and 2020, using a search string. A total of 429 articles were returned, however, after filtering by exclusion and inclusion criteria, 139 were included. Through this systematic review, it was possible to identify the challenges present in the construction of arboviruses prediction models, as well as the existing gap in the construction of spatiotemporal models

    Low credibility URL sharing on Twitter during reporting linking rare blood clots with the Oxford/AstraZeneca COVID-19 vaccine.

    No full text
    The COVID-19 pandemic was accompanied by an "infodemic" of misinformation. Misleading narratives around the virus, its origin, and treatments have had serious implications for public health. In March 2021, concerns were raised about links between the Oxford/AstraZeneca (AZ) COVID-19 vaccine and recipients developing blood clots. This paper aims to identify whether this prompted any reaction in the diffusion of low-credibility COVID-19-relate information on Twitter. Twitter's application programming interface was used to collect data containing COVID-19-related keywords between 4th and 25th March 2021, a period centred on the peak of new coverage linking rare blood clots with the AZ vaccine. We analysed and visualised the data using temporal analysis and social network analysis tools. We subsequently analysed the data to determine the most influential users and domains in the propagation of low-credibility information about COVID-19 and the AZ vaccine. This research presents evidence that the peak of news coverage linking rare blood clots with the AZ vaccine correlated with an increased volume and proportion of low-credibility AZ-related content propagated on Twitter. However, no equivalent changes to the volume, propagation, or network structure for the full dataset of COVID-19-related information or misinformation were observed. The research identified RT.com as the most prolific creator of low-credibility COVID-19-related content. It also highlighted the crucial role of self-promotion in the successful propagation of low-credibility content on Twitter. The findings suggest that the simple approach adopted within the research to identify the most popular and influential sources of low-credibility content presents a valuable opportunity for public health authorities and social media platforms to develop bespoke strategies to counter the propagation of misinformation in the aftermath of a breaking news event

    Residual COVID dataset, Pre-Peak period, file 14 of 16.

    No full text
    Residual COVID dataset, Pre-Peak period, file 14 of 16.</p

    Residual COVID dataset, Post-Peak period, file 11 of 14.

    No full text
    Residual COVID dataset, Post-Peak period, file 11 of 14.</p

    Residual AZ dataset, Peak period.

    No full text
    The COVID-19 pandemic was accompanied by an “infodemic” of misinformation. Misleading narratives around the virus, its origin, and treatments have had serious implications for public health. In March 2021, concerns were raised about links between the Oxford/AstraZeneca (AZ) COVID-19 vaccine and recipients developing blood clots. This paper aims to identify whether this prompted any reaction in the diffusion of low-credibility COVID-19-relate information on Twitter. Twitter’s application programming interface was used to collect data containing COVID-19-related keywords between 4th and 25th March 2021, a period centred on the peak of new coverage linking rare blood clots with the AZ vaccine. We analysed and visualised the data using temporal analysis and social network analysis tools. We subsequently analysed the data to determine the most influential users and domains in the propagation of low-credibility information about COVID-19 and the AZ vaccine. This research presents evidence that the peak of news coverage linking rare blood clots with the AZ vaccine correlated with an increased volume and proportion of low-credibility AZ-related content propagated on Twitter. However, no equivalent changes to the volume, propagation, or network structure for the full dataset of COVID-19-related information or misinformation were observed. The research identified RT.com as the most prolific creator of low-credibility COVID-19-related content. It also highlighted the crucial role of self-promotion in the successful propagation of low-credibility content on Twitter. The findings suggest that the simple approach adopted within the research to identify the most popular and influential sources of low-credibility content presents a valuable opportunity for public health authorities and social media platforms to develop bespoke strategies to counter the propagation of misinformation in the aftermath of a breaking news event.</div

    Residual COVID dataset, Peak period, file 4 of 15.

    No full text
    Residual COVID dataset, Peak period, file 4 of 15.</p

    Popular sources of low-credibility information from the AZ Corpus based on the cumulative number of times they were tweeted and retweeted during the Pre-Peak (navy), Peak (red), and Post-Peak (teal) periods.

    No full text
    Popular sources of low-credibility information from the AZ Corpus based on the cumulative number of times they were tweeted and retweeted during the Pre-Peak (navy), Peak (red), and Post-Peak (teal) periods.</p
    corecore