8 research outputs found

    Extrusion dwell time and its effect on the mechanical and thermal properties of pitch/LLDPE blend fibres

    Get PDF
    Mesophase pitch-based carbon fibres have excellent resistance to plastic deformation (up to 840 GPa); however, they have very low strain to failure (0.3) and are considered brittle. Hence, the development of pitch fibre precursors able to be plastically deformed without fracture is important. We have previously, successfully developed pitch-based precursor fibres with high ductility (low brittleness) by blending pitch and linear low-density polyethylene. Here, we extend our research to study how the extrusion dwell time (0, 6, 8, and 10 min) affects the physical properties (microstructure) of blend fibres. Scanning electron microscopy of the microstructure showed that by increasing the extrusion dwell from 0 to 10 min the pitch and polyethylene components were more uniformly dispersed. The tensile strength, modulus of elasticity, and strain at failure for the extruded fibres for different dwell times were measured. Increased dwell time resulted in an increase in strain to failure but reduced the ultimate tensile strength. Thermogravimetric analysis was used to investigate if increased dwell time improved the thermal stability of the samples. This study presents a useful guide to help with the selection of mixes of linear low-density polyethylene/pitch blend, with an appropriate extrusion dwell time to help develop a new generation of potential precursors for pitch-based carbon fibres

    Manufacturing carbon fibres from pitch and polyethylene blend precursors: a review

    Get PDF
    Carbon fibres are one of the newer, emerging materials with multiple engineering applications, from automobiles to space vehicles. Carbon fibres have high mechanical strength, are lighter than metals with better chemical resistance. There have been reports on the use of polyethylene and pitch precursors for the production of carbon fibres, but there are few reports of how these blends could be used for carbon fibre preparation. Bearing in mind the myriad of benefits that using carbon fibres could bring, this paper reviews recent advances published in the literature on how mesophase pitch and polyethylene could be suitable precursors for carbon fibres. It also provides an introduction to the development of precursor blends that allow the properties of carbon fibres to be tailored to specific applications, including processing techniques, fibre parameters, fibre properties and fibre structur

    Influence of high-concentration LLDPE on the manufacturing process and morphology of pitch/LLDPE fibres

    Get PDF
    A high modulus of elasticity is a distinctive feature of carbon fibres produced from mesophase pitch. In this work, we expand our previous study of pitch/linear low-density polyethylene blend fibres, increasing the concentration of the linear low-density polyethylene in the blend into the range of from 30 to 90 wt%. A scanning electron microscope study showed two distinct phases in the fibres: one linear low-density polyethylene, and the other pitch fibre. Unique morphologies of the blend were observed. They ranged from continuous microfibres of pitch embedded in linear low-density polyethylene (occurring at high concentrations of pitch) to a discontinuous region showing the presence of spherical pitch nodules (at high concentrations of linear low-density polyethylene). The corresponding mechanical properties—such as tensile strength, tensile modulus, and strain at failure—of different concentrations of linear low-density polyethylene in the pitch fibre were measured and are reported here. Thermogravimetric analysis was used to investigate how the increased linear low-density polyethylene content affected the thermal stability of linear low-density polyethylene/pitch fibres. It is shown that selecting appropriate linear low-density polyethylene concentrations is required, depending on the requirement of thermal stability and mechanical properties of the fibres. Our study offers new and useful guidance to the scientific community to help select the appropriate combinations of linear low-density polyethylene/pitch blend concentrations based on the required mechanical property and thermal stability of the fibres

    Manufacturing pitch and polyethylene blends-based fibres as potential carbon fibre precursors

    Get PDF
    The advantage of mesophase pitch-based carbon fibres is their high modulus, but pitch-based carbon fibres and precursors are very brittle. This paper reports the development of a unique manufacturing method using a blend of pitch and linear low-density polyethylene (LLDPE) from which it is possible to obtain precursors that are less brittle than neat pitch fibres. This study reports on the structure and properties of pitch and LLDPE blend precursors with LLDPE content ranging from 5 wt% to 20 wt%. Fibre microstructure was determined using scanning electron microscopy (SEM), which showed a two-phase region having distinct pitch fibre and LLDPE regions. Tensile testing of neat pitch fibres showed low strain to failure (brittle), but as the percentage of LLDPE was increased, the strain to failure and tensile strength both increased by a factor of more than 7. DSC characterisation of the melting/crystallization behaviour of LLDPE showed melting occurred around 120 °C to 124 °C, with crystallization between 99 °C and 103 °C. TGA measurements showed that for 5 wt%, 10 wt% LLDPE thermal stability was excellent to 800 °C. Blend pitch/LLDPE carbon fibres showed reduced brittleness combined with excellent thermal stability, and thus are a candidate as a potential precursor for pitch-based carbon fibre manufacturing

    Extrusion Dwell Time and Its Effect on the Mechanical and Thermal Properties of Pitch/LLDPE Blend Fibres

    No full text
    Mesophase pitch-based carbon fibres have excellent resistance to plastic deformation (up to 840 GPa); however, they have very low strain to failure (0.3) and are considered brittle. Hence, the development of pitch fibre precursors able to be plastically deformed without fracture is important. We have previously, successfully developed pitch-based precursor fibres with high ductility (low brittleness) by blending pitch and linear low-density polyethylene. Here, we extend our research to study how the extrusion dwell time (0, 6, 8, and 10 min) affects the physical properties (microstructure) of blend fibres. Scanning electron microscopy of the microstructure showed that by increasing the extrusion dwell from 0 to 10 min the pitch and polyethylene components were more uniformly dispersed. The tensile strength, modulus of elasticity, and strain at failure for the extruded fibres for different dwell times were measured. Increased dwell time resulted in an increase in strain to failure but reduced the ultimate tensile strength. Thermogravimetric analysis was used to investigate if increased dwell time improved the thermal stability of the samples. This study presents a useful guide to help with the selection of mixes of linear low-density polyethylene/pitch blend, with an appropriate extrusion dwell time to help develop a new generation of potential precursors for pitch-based carbon fibres

    Image-Based Partial Discharge Identification in High Voltage Cables Using Hybrid Deep Network

    No full text
    Deep learning and digital image technologies have combined to create a potentially effective tool for identifying partial discharge (PD) patterns precisely. However, it is necessary to investigate which algorithm guarantees the best performance. The more common tools are restricted by a lack of training data and an advanced model in itself. Therefore, the main goal of this paper is to develop an efficient hybrid network comprising two deep networks, long short-term memory (LSTM), and convolutional neural network (CNN), for identifying the form of PD. A total of 8186×258186\times 25 (non-PD ×\times PD) images were applied to assess the proposed methods. The size of the PD type was increased to 3675 images using data augmentation techniques. The results indicated that the integration of CNN and LSTM networks can provide a more robust implementation for PD detection. The integrated CNN-LSTM deep network based on data augmentation outperformed features derived from a single deep network. The recall, F-measure, and classification precision have 99.9% as a validation accuracy with a 99.8% intersection over union and a loss of 0.004

    Formulation and Therapeutic Evaluation of Isoxsuprine-Loaded Nanoparticles against Diabetes-Associated Stroke

    No full text
    Ischemic stroke is the second-leading cause of death. Hyperglycemia, which is characteristic of diabetes mellitus, contributes to the development of endothelial dysfunction and increases the risk of stroke. Isoxsuprine is an efficient beta-adrenergic agonist that improves blood flow to the ischemic aria and stops the infarct core from growing. However, low bioavailability, a short biological half-life, and first-pass hepatic metabolism reduce the therapeutic efficacy of oral isoxsuprine. Therefore, the authors focused on developing isoxsuprine-loaded liposomes containing ethanol and propylene glycol (ILEP) formulation as nasal drops for the treatment of ischemic stroke in diabetic patients. Different ILEP formulations were optimized using Design Expert software, and the selected formulation was examined in vivo for its anti-stroke effect using a rat model of diabetes and stroke. The optimized ILEP, composed of 15% propylene glycol, 0.16% cholesterol, 10% ethanol, and 3.29% phospholipid, improved the sustainability, permeation, and targeting of isoxsuprine. Furthermore, the in vivo studies verified the improved neurological behavior and decreased dead shrunken neurons and vascular congestion of the rats treated with the optimized ILEP formulation, demonstrating its anti-stroke activity. In conclusion, our study found that treatment with an optimized ILEP formulation prevented the initiation and severity of stroke, especially in diabetic patients

    Manufacturing of carbon fiber reinforced thermoplastics and its recovery of carbon fiber: A review

    No full text
    Polymer matrix composites are excellent materials for a variety of industrial applications. They have superior mechanical, thermal and electrical properties, making them preferable to traditional materials such as metal. To make polymer matrix composite materials, thermosetting, elastomers and thermoplastic polymers are mainly the three types of polymers that can be utilized as matrices. In comparison to thermosetting and elastomers polymers, carbon fiber reinforced thermoplastic (CFRTP), is the subject of this research, are gaining popularity in many industrial sectors due to its recyclability, simplicity of processing, good characteristics, flexibility, and less production time. This review covers conventional and state-of-the-art manufacturing techniques of CFRTP. Moreover, the potential and existing of CFRTP's application as well as the techniques of carbon fiber recovery and recycling methods of such materials were also examined. Overall, this study considers the research and development on manufacturing CFRTP and recycling techniques of polymer composites to recover carbon fiber materials
    corecore