5 research outputs found

    Multi-level Neural Networks for Accurate Solutions of Boundary-Value Problems

    Full text link
    The solution to partial differential equations using deep learning approaches has shown promising results for several classes of initial and boundary-value problems. However, their ability to surpass, particularly in terms of accuracy, classical discretization methods such as the finite element methods, remains a significant challenge. Deep learning methods usually struggle to reliably decrease the error in their approximate solution. A new methodology to better control the error for deep learning methods is presented here. The main idea consists in computing an initial approximation to the problem using a simple neural network and in estimating, in an iterative manner, a correction by solving the problem for the residual error with a new network of increasing complexity. This sequential reduction of the residual of the partial differential equation allows one to decrease the solution error, which, in some cases, can be reduced to machine precision. The underlying explanation is that the method is able to capture at each level smaller scales of the solution using a new network. Numerical examples in 1D and 2D are presented to demonstrate the effectiveness of the proposed approach. This approach applies not only to physics informed neural networks but to other neural network solvers based on weak or strong formulations of the residual.Comment: 34 pages, 20 figure

    Optimal error analysis of the spectral element method for the 2D homogeneous wave equation

    No full text
    International audienceOptimal a priori error bounds are theoretically derived, and numerically verified, for approximate solutions to the 2D homogeneous wave equation obtained by the spectral element method. To be precise, the spectral element method studied here takes advantage of the Gauss-Lobatto-Legendre quadrature, thus resulting in under-integrated elements but a diagonal mass matrix. The approximation error in is shown to be of order with respect to the element size h and of order with respect to the degree p, where q is the spatial regularity of the solution. These results improve on past estimates in the norm, particularly with respect to h. Specific assumptions on the discretization by the spectral element method are the use of a triangulation by quadrilaterals constructed via affine transformations from a reference square element and of a second order discretization in time by the leap-frog scheme

    Multi-level Neural Networks for Accurate Solutions of Boundary-Value Problems

    No full text
    The solution to partial differential equations using deep learning approaches has shown promising results for several classes of initial and boundary-value problems. However, their ability to surpass, particularly in terms of accuracy, classical discretization methods such as the finite element methods, remains a significant challenge. Deep learning methods usually struggle to reliably decrease the error in their approximate solution. A new methodology to better control the error for deep learning methods is presented here. The main idea consists in computing an initial approximation to the problem using a simple neural network and in estimating, in an iterative manner, a correction by solving the problem for the residual error with a new network of increasing complexity. This sequential reduction of the residual of the partial differential equation allows one to decrease the solution error, which, in some cases, can be reduced to machine precision. The underlying explanation is that the method is able to capture at each level smaller scales of the solution using a new network. Numerical examples in 1D and 2D are presented to demonstrate the effectiveness of the proposed approach. This approach applies not only to physics informed neural networks but to other neural network solvers based on weak or strong formulations of the residual

    Operator approximation of the wave equation based on deep learning of Green's function

    No full text
    Deep operator networks (DeepONets) have demonstrated their capability of approximating nonlinear operators for initial-and boundary-value problems. One attractive feature of DeepONets is their versatility since they do not rely on prior knowledge about the solution structure of a problem and can thus be directly applied to a large class of problems. However, convergence in identifying the parameters of the networks may sometimes be slow. In order to improve on DeepONets for approximating the wave equation, we introduce the Green operator networks (GreenONets), which use the representation of the exact solution to the homogeneous wave equation in term of the Green's function. The performance of GreenONets and DeepONets is compared on a series of numerical experiments for homogeneous and heterogeneous media in one and two dimensions
    corecore