461 research outputs found

    Environmental factors, life events, and trauma in the course of bipolar disorder

    Get PDF
    The etiology and clinical course of bipolar disorder are considered to be determined by genetic and environmental factors. Although the kindling hypothesis emphasizes the impact of environmental factors on initial onset, their connection to the outcome and clinical course have been poorly established. Hence, there have been numerous research efforts to investigate the impact of environmental factors on the clinical course of illness. Our aim is to outline recent research on the impact of environmental determinants on the clinical course of bipolar disorder. We carried out a computer-aided search to find publications on an association between environmental factors, life events, and the clinical course of bipolar disorder. Publications in the reference lists of suitable papers have also been taken into consideration. We performed a narrative overview on all eligible publications. The available body of data supports an association between environmental factors and the clinical course of bipolar disorder. These factors comprise prenatal, early-life, and entire lifespan aspects. Given varying sample sizes and several methodological limitations, the reported quality and extent of the association between environmental factors and the clinical course of bipolar disorder should be interpreted with utmost caution. Systematic longitudinal long-term follow-up trials are needed to obtain a clearer and more robust picture

    Custom stems for femoral deformity in patients less than 40 years of age: 70 hips followed for an average of 14 years

    Get PDF
    Background and purpose Femoral deformity associated with osteoarthritis is a challenge for both the surgeon and the implant. Many of the patients with these deformities are young. Standard implants can be difficult to fit into these femurs. We prospectively evaluated the outcome of custom uncemented femoral stems in young patients

    Relativistic quantum model of confinement and the current quark masses

    Get PDF
    We consider a relativistic quantum model of confined massive spinning quarks and antiquarks which describes leading Regge trajectories of mesons. The quarks are described by the Dirac equations and the gluon contribution is approximated by the Nambu-Goto straight-line string. The string tension and the current quark masses are the main parameters of the model. Additional parameters are phenomenological constants which approximate nonstring short-range contributions. Comparison of the measured meson masses with the model predictions allows one to determine the current quark masses (in MeV) to be ms=227±5, mc=1440±10, mb=4715±20m_s = 227 \pm 5,~ m_c = 1440 \pm 10,~ m_b = 4715 \pm 20. The chiral SU3SU_3 model[23] makes it possible to estimate from here the uu- and dd-quark masses to be mu=6.2±0.2m_u = 6.2 \pm 0.2~ Mev and md=11.1±0.4m_d = 11.1 \pm 0.4 Mev.Comment: 15 pages, LATEX, 2 tables. (submitted to Phys.Rev.D

    An evaluation and comparison of conservation guidelines for an at-risk migratory songbird

    Get PDF
    For at-risk wildlife species, it is important to consider conservation within the process of adaptive management. Golden-winged Warblers (Vermivora chrysoptera) are Neotropical migratory songbirds that are experiencing long-term population declines due in part to the loss of early-successional nesting habitat. Recently-developed Golden-winged Warbler habitat management guidelines are being implemented by USDA: Natural Resource Conservation Service (2014) and its partners through the Working Lands For Wildlife (WLFW) program. During 2012–2014, we studied the nesting ecology of Golden-winged Warblers in managed habitats of the eastern US that conformed to WLFW conservation practices. We evaluated five NRCS “management scenarios” with respect to nesting success and attainment of recommended nest site vegetation conditions outlined in the Golden-winged Warbler breeding habitat guidelines. Using estimates of territory density, pairing rate, nest survival, and clutch size, we also estimated fledglingproductivity (number of fledglings/ha) for each management scenario. In general, Golden-winged Warbler nest survival declined as each breeding season advanced, but nest survival was similar across management scenarios. Within each management scenario, vegetation variables had little influence on nest survival. Still, percent Rubus cover and density of \u3e2 m tall shrubs were relevant in some management scenarios. All five management scenarios rarely attained recommended levels of nest site vegetation conditions for Golden-winged, yet nest survival was high. Fledgling productivity estimates for each management scenario ranged from 2.1 to 8.6 fledglings/10 hectares. Our results indicate that targeted habitat management for Golden-winged Warblers using a variety of management techniques on private lands has the capability to yield high nest survival and fledgling productivity, and thus have the potential to contribute to the species recovery

    Spatial and cell type transcriptional landscape of human cerebellar development

    Get PDF
    The human neonatal cerebellum is one-fourth of its adult size yet contains the blueprint required to integrate environmental cues with developing motor, cognitive and emotional skills into adulthood. Although mature cerebellar neuroanatomy is well studied, understanding of its developmental origins is limited. In this study, we systematically mapped the molecular, cellular and spatial composition of human fetal cerebellum by combining laser capture microscopy and SPLiT-seq single-nucleus transcriptomics. We profiled functionally distinct regions and gene expression dynamics within cell types and across development. The resulting cell atlas demonstrates that the molecular organization of the cerebellar anlage recapitulates cytoarchitecturally distinct regions and developmentally transient cell types that are distinct from the mouse cerebellum. By mapping genes dominant for pediatric and adult neurological disorders onto our dataset, we identify relevant cell types underlying disease mechanisms. These data provide a resource for probing the cellular basis of human cerebellar development and disease

    Variables associated with nest survival of Golden-winged Warblers (Vermivora chrysoptera) among vegetation communities commonly used for nesting

    Get PDF
    Among shrubland- and young forest-nesting bird species in North America, Golden-winged Warblers (Vermivora chrysoptera) are one of the most rapidly declining partly because of limited nesting habitat. Creation and management of high quality vegetation communities used for nesting are needed to reduce declines. Thus, we examined whether common characteristics could be managed across much of the Golden-winged Warbler’s breeding range to increase daily survival rate (DSR) of nests. We monitored 388 nests on 62 sites throughout Minnesota, Wisconsin, New York, North Carolina, Pennsylvania, Tennessee, and West Virginia. We evaluated competing DSR models in spatial-temporal (dominant vegetation type, population segment, state, and year), intraseasonal (nest stage and time-within-season), and vegetation model suites. The best-supported DSR models among the three model suites suggested potential associations between daily survival rate of nests and state, time-within-season, percent grass and Rubus cover within 1 m of the nest, and distance to later successional forest edge. Overall, grass cover (negative association with DSR above 50%) and Rubus cover (DSR lowest at about 30%) within 1 m of the nest and distance to later successional forest edge (negative association with DSR) may represent common management targets across our states for increasing Golden-winged Warbler DSR, particularly in the Appalachian Mountains population segment. Context-specific adjustments to management strategies, such as in wetlands or areas of overlap with Blue-winged Warblers (Vermivora cyanoptera), may be necessary to increase DSR for Golden-winged Warblers
    corecore