55 research outputs found

    WHS Guidelines for the Treatment of Pressure Ulcers: 2023 Update

    Get PDF
    The major populations at risk for developing pressure ulcers are older adults who have multiple risk factors that increase their vulnerability, people who are critically ill and those with spinal cord injury/disease. The reported prevalence of pressure ulcers in the United States is 2.5 million. However, this estimate is derived from acute care facilities and does not include people who are living at home or in nursing facilities. Despite the implementation of hospital and facility-based preventive measures, the incidence of pressure ulcers has not decreased in decades. In addition to the burden of pain, infection and death, it is estimated that hospital-acquired pressure ulcers cost the health system $26.8 billion annually with over 50% of the cost attributed to treating Stage 3 and 4 pressure injuries. Thus, it is critical to examine the literature and develop guidelines that will improve the outcomes of this complex and costly condition. This guideline update is a compendium of the best available evidence for the treatment of Pressure Ulcers published since the last update in 2015 and includes a new section based on changing demographics entitled ‘Palliative wound care for seriously ill patients with pressure ulcers’. The overall goal of the Wound Healing Society Guideline project is to present clear, concise and commercial free guidelines that clinicians can use to guide care, that researchers can use to develop studies that will improve treatment and that both clinicians and researchers can use to understand the gaps in our knowledge base

    Killing Hypoxic Cell Populations in a 3D Tumor Model with EtNBS-PDT

    Get PDF
    An outstanding problem in cancer therapy is the battle against treatment-resistant disease. This is especially true for ovarian cancer, where the majority of patients eventually succumb to treatment-resistant metastatic carcinomatosis. Limited perfusion and diffusion, acidosis, and hypoxia play major roles in the development of resistance to the majority of front-line therapeutic regimens. To overcome these limitations and eliminate otherwise spared cancer cells, we utilized the cationic photosensitizer EtNBS to treat hypoxic regions deep inside in vitro 3D models of metastatic ovarian cancer. Unlike standard regimens that fail to penetrate beyond ∼150 µm, EtNBS was found to not only penetrate throughout the entirety of large (>200 µm) avascular nodules, but also concentrate into the nodules' acidic and hypoxic cores. Photodynamic therapy with EtNBS was observed to be highly effective against these hypoxic regions even at low therapeutic doses, and was capable of destroying both normoxic and hypoxic regions at higher treatment levels. Imaging studies utilizing multiphoton and confocal microscopies, as well as time-lapse optical coherence tomography (TL-OCT), revealed an inside-out pattern of cell death, with apoptosis being the primary mechanism of cell killing. Critically, EtNBS-based photodynamic therapy was found to be effective against the model tumor nodules even under severe hypoxia. The inherent ability of EtNBS photodynamic therapy to impart cytotoxicity across a wide range of tumoral oxygenation levels indicates its potential to eliminate treatment-resistant cell populations

    A Novel Triterpenoid Isolated from the Root Bark of Ailanthus excelsa Roxb (Tree of Heaven), AECHL-1 as a Potential Anti-Cancer Agent

    Get PDF
    We report here the isolation and characterization of a new compound Ailanthus excelsa chloroform extract-1 (AECHL-1) (C(29)H(36)O(10); molecular weight 543.8) from the root bark of Ailanthus excelsa Roxb. The compound possesses anti-cancer activity against a variety of cancer cell lines of different origin.AECHL-1 treatment for 12 to 48 hr inhibited cell proliferation and induced death in B16F10, MDA-MB-231, MCF-7, and PC3 cells with minimum growth inhibition in normal HEK 293. The antitumor effect of AECHL-1 was comparable with that of the conventional antitumor drugs paclitaxel and cisplatin. AECHL-1-induced growth inhibition was associated with S/G(2)-M arrests in MDA-MB-231, MCF-7, and PC3 cells and a G(1) arrest in B16F10 cells. We observed microtubule disruption in MCF-7 cells treated with AECHL-1 in vitro. Compared with control, subcutaneous injection of AECHL-1 to the sites of tumor of mouse melanoma B16F10 implanted in C57BL/6 mice and human breast cancer MCF-7 cells in athymic nude mice resulted in significant decrease in tumor volume. In B16F10 tumors, AECHL-1 at 50 microg/mouse/day dose for 15 days resulted in increased expression of tumor suppressor proteins P53/p21, reduction in the expression of the oncogene c-Myc, and downregulation of cyclin D1 and cdk4. Additionally, AECHL-1 treatment resulted in the phosphorylation of p53 at serine 15 in B16F10 tumors, which seems to exhibit p53-dependent growth inhibitory responses.The present data demonstrate the activity of a triterpenoid AECHL-1 which possess a broad spectrum of activity against cancer cells. We propose here that AECHL-1 is a futuristic anti-cancer drug whose therapeutic potential needs to be widely explored for chemotherapy against cancer

    In Vitro Identification and Characterization of CD133pos Cancer Stem-Like Cells in Anaplastic Thyroid Carcinoma Cell Lines

    Get PDF
    Background: Recent publications suggest that neoplastic initiation and growth are dependent on a small subset of cells, termed cancer stem cells (CSCs). Anaplastic Thyroid Carcinoma (ATC) is a very aggressive solid tumor with poor prognosis, characterized by high dedifferentiation. The existence of CSCs might account for the heterogeneity of ATC lesions. CD133 has been identified as a stem cell marker for normal and cancerous tissues, although its biological function remains unknown. Methodology/Principal Findings: ATC cell lines ARO, KAT-4, KAT-18 and FRO were analyzed for CD133 expression. Flow cytometry showed CD133pos cells only in ARO and KAT-4 (6469% and 57612%, respectively). These data were confirmed by qRT-PCR and immunocytochemistry. ARO and KAT-4 were also positive for fetal marker oncofetal fibronectin and negative for thyrocyte-specific differentiating markers thyroglobulin, thyroperoxidase and sodium/iodide symporter. Sorted ARO/ CD133pos cells exhibited higher proliferation, self-renewal, colony-forming ability in comparison with ARO/CD133neg. Furthermore, ARO/CD133pos showed levels of thyroid transcription factor TTF-1 similar to the fetal thyroid cell line TAD-2, while the expression in ARO/CD133neg was negligible. The expression of the stem cell marker OCT-4 detected by RT-PCR and flow cytometry was markedly higher in ARO/CD133pos in comparison to ARO/CD133neg cells. The stem cell markers c- KIT and THY-1 were negative. Sensitivity to chemotherapy agents was investigated, showing remarkable resistance to chemotherapy-induced apoptosis in ARO/CD133pos when compared with ARO/CD133neg cells. Conclusions/Significance: We describe CD133pos cells in ATC cell lines. ARO/CD133pos cells exhibit stem cell-like features - such as high proliferation, self-renewal ability, expression of OCT-4 - and are characterized by higher resistance to chemotherapy. The simultaneous positivity for thyroid specific factor TTF-1 and onfFN suggest they might represent putative thyroid cancer stem-like cells. Our in vitro findings might provide new insights for novel therapeutic approaches

    Elemental and chemically specific x-ray fluorescence imaging of biological systems

    Get PDF
    corecore