19 research outputs found

    Stochastic Hard-Sphere Dynamics for Hydrodynamics of Non-Ideal Fluids

    Get PDF
    A novel stochastic fluid model is proposed with non-ideal structure factor consistent with compressibility, and adjustable transport coefficients. This Stochastic Hard Sphere Dynamics (SHSD) algorithm is a modification of the Direct Simulation Monte Carlo (DSMC) algorithm and has several computational advantages over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD results in an equation of state and pair correlation function identical to that of a deterministic Hamiltonian system of penetrable spheres interacting with linear core pair potentials. The fluctuating hydrodynamic behavior of the SHSD fluid is verified for the Brownian motion of a nano-particle suspended in a compressible solvent.Comment: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-401745). To appear in Phys. Rev. Lett. 200

    Direct Simulation Monte Carlo for Thin Film Bearings

    Get PDF
    The direct simulation Monte Carlo (DSMC) scheme is used to study the gas flow under a read/write head positioned nanometers above a moving disk drive platter (the slider bearing problem). In most cases, impressive agreement is found between the particle-based simulation and numerical solutions of the continuum hydrodynamic Reynolds equation which has been corrected for slip. However, at very high platter speeds the gas is far from equilibrium, and the load capacity for the slider bearing cannot be accurately computed from the hydrodynamic pressure
    corecore