5,548 research outputs found

    General Reaction-Diffusion Processes With Separable Equations for Correlation Functions

    Full text link
    We consider general multi-species models of reaction diffusion processes and obtain a set of constraints on the rates which give rise to closed systems of equations for correlation functions. Our results are valid in any dimension and on any type of lattice. We also show that under these conditions the evolution equations for two point functions at different times are also closed. As an example we introduce a class of two species models which may be useful for the description of voting processes or the spreading of epidemics.Comment: 17 pages, Latex, No figure

    Excited states in the twisted XXZ spin chain

    Full text link
    We compute the finite size spectrum for the spin 1/2 XXZ chain with twisted boundary conditions, for anisotropy in the regime 0<γ<π/20< \gamma <\pi/2, and arbitrary twist θ\theta. The string hypothesis is employed for treating complex excitations. The Bethe Ansatz equtions are solved within a coupled non-linear integral equation approach, with one equation for each type of string. The root-of-unity quantum group invariant periodic chain reduces to the XXZ_1/2 chain with a set of twist boundary conditions (π/γZ\pi/\gamma\in Z, θ\theta an integer multiple of γ\gamma). For this model, the restricted Hilbert space corresponds to an unitary conformal field theory, and we recover all primary states in the Kac table in terms of states with specific twist and strings.Comment: 16 pages, Latex; added discussion on quantum group invariance and arbitrary magnon numbe

    On the spin-liquid phase of one dimensional spin-1 bosons

    Full text link
    We consider a model of one dimensional spin-1 bosons with repulsive density-density interactions and antiferromagnetic exchange. We show that the low energy effective field theory is given by a spin-charge separated theory of a Tomonaga-Luttinger Hamiltonian and the O(3) nonlinear sigma model describing collective charge and spin excitations respectively. At a particular ratio of the density-density to spin-spin interaction the model is integrable, and we use the exact solutions to provide an independent derivation of the low energy effective theory. The system is in a superfluid phase made of singlet pairs of bosons, and we calculate the long-distance asymptotics of certain correlation functions.Comment: 17 page

    Derivation of Matrix Product Ansatz for the Heisenberg Chain from Algebraic Bethe Ansatz

    Full text link
    We derive a matrix product representation of the Bethe ansatz state for the XXX and XXZ spin-1/2 Heisenberg chains using the algebraic Bethe ansatz. In this representation, the components of the Bethe eigenstates are expressed as traces of products of matrices which act on Hˉ{\bar {\mathscr H}}, the tensor product of auxiliary spaces. By changing the basis in Hˉ{\bar {\mathscr H}}, we derive explicit finite-dimensional representations for the matrices. These matrices are the same as those appearing in the recently proposed matrix product ansatz by Alcaraz and Lazo [Alcaraz F C and Lazo M J 2006 {\it J. Phys. A: Math. Gen.} \textbf{39} 11335.] apart from normalization factors. We also discuss the close relation between the matrix product representation of the Bethe eigenstates and the six-vertex model with domain wall boundary conditions [Korepin V E 1982 {\it Commun. Math. Phys.}, \textbf{86} 391.] and show that the change of basis corresponds to a mapping from the six-vertex model to the five-vertex model.Comment: 24 pages; minor typos are correcte

    Simplified Calculation of Boundary S Matrices

    Full text link
    The antiferromagnetic Heisenberg spin chain with N spins has a sector with N=odd, in which the number of excitations is odd. In particular, there is a state with a single one-particle excitation. We exploit this fact to give a simplified derivation of the boundary S matrix for the open antiferromagnetic spin-1/2 Heisenberg spin chain with diagonal boundary magnetic fields.Comment: 8 pages, LaTeX, no figure

    Mixed Heisenberg Chains. I. The Ground State Problem

    Full text link
    We consider a mechanism for competing interactions in alternating Heisenberg spin chains due to the formation of local spin-singlet pairs. The competition of spin-1 and spin-0 states reveals hidden Ising symmetry of such alternating chains.Comment: 7 pages, RevTeX, 4 embedded eps figures, final versio

    Boundary bound states and boundary bootstrap in the sine-Gordon model with Dirichlet boundary conditions.

    Full text link
    We present a complete study of boundary bound states and related boundary S-matrices for the sine-Gordon model with Dirichlet boundary conditions. Our approach is based partly on the bootstrap procedure, and partly on the explicit solution of the inhomogeneous XXZ model with boundary magnetic field and of the boundary Thirring model. We identify boundary bound states with new ``boundary strings'' in the Bethe ansatz. The boundary energy is also computed.Comment: 25 pages, harvmac macros Report USC-95-001

    A sufficient criterion for integrability of stochastic many-body dynamics and quantum spin chains

    Full text link
    We propose a dynamical matrix product ansatz describing the stochastic dynamics of two species of particles with excluded-volume interaction and the quantum mechanics of the associated quantum spin chains respectively. Analyzing consistency of the time-dependent algebra which is obtained from the action of the corresponding Markov generator, we obtain sufficient conditions on the hopping rates for identifing the integrable models. From the dynamical algebra we construct the quadratic algebra of Zamolodchikov type, associativity of which is a Yang Baxter equation. The Bethe ansatz equations for the spectra are obtained directly from the dynamical matrix product ansatz.Comment: 19 pages Late

    A deformed analogue of Onsager's symmetry in the XXZ open spin chain

    Full text link
    The XXZ open spin chain with general integrable boundary conditions is shown to possess a q-deformed analogue of the Onsager's algebra as fundamental non-abelian symmetry which ensures the integrability of the model. This symmetry implies the existence of a finite set of independent mutually commuting nonlocal operators which form an abelian subalgebra. The transfer matrix and local conserved quantities, for instance the Hamiltonian, are expressed in terms of these nonlocal operators. It follows that Onsager's original approach of the planar Ising model can be extended to the XXZ open spin chain.Comment: 12 pages; LaTeX file with amssymb; v2: typos corrected, clarifications in the text; v3: minor changes in references, version to appear in JSTA

    Bethe Ansatz solution of the open XXZ chain with nondiagonal boundary terms

    Full text link
    We propose a set of conventional Bethe Ansatz equations and a corresponding expression for the eigenvalues of the transfer matrix for the open spin-1/2 XXZ quantum spin chain with nondiagonal boundary terms, provided that the boundary parameters obey a certain linear relation.Comment: 11 pages, LaTeX; amssymb, amsmath, no figures; v2: citation adde
    corecore