12 research outputs found
Bohmian mechanics, the quantum-classical correspondence and the classical limit: the case of the square billiard
Square billiards are quantum systems complying with the dynamical
quantum-classical correspondence. Hence an initially localized wavefunction
launched along a classical periodic orbit evolves along that orbit, the
spreading of the quantum amplitude being controlled by the spread of the
corresponding classical statistical distribution. We investigate wavepacket
dynamics and compute the corresponding de Broglie-Bohm trajectories in the
quantum square billiard. We also determine the trajectories and statistical
distribution dynamics for the equivalent classical billiard. Individual Bohmian
trajectories follow the streamlines of the probability flow and are generically
non-classical. This can also hold even for short times, when the wavepacket is
still localized along a classical trajectory. This generic feature of Bohmian
trajectories is expected to hold in the classical limit. We further argue that
in this context decoherence cannot constitute a viable solution in order to
recover classicality.Comment: Figures downgraded to low resolution; To be published in Found. Phys.
(2009)
Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health?
Improvement of traditional fish products and fish drying systems in the Philippines (Phase III) : terminal report 1983
Calbindin D-28k and parvalbumin immunoreactivity in the frontal cortex in patients with frontal lobe dementia of non-Alzheimer type associated with amyotrophic lateral sclerosis.
The morphology and distribution of local-circuit neurons (interneurons) were examined, by calbindin D-28k and parvalbumin immunocytochemistry, in the frontal cortex (area 8) in two patients with frontal lobe dementia of non-Alzheimer type associated with classical amyotrophic lateral sclerosis (ALS), and in seven normal cases. The density of calbindin D-28k immunoreactive cells was dramatically reduced in ALS patients, but the density of parvalbumin-immunoreactive neurons was preserved. Decreased density of calbindin D-28k-immunoreactive neurons, which are mainly located in the upper cortical layers, may interfere with the normal processing of cortico-cortical connections, whereas integrity of parvalbumin-immunoreactive cells may be associated with the preservation of the major inhibitory intracortical circuits in patients with frontal lobe dementia
