5 research outputs found

    Exciton diffusion in two-dimensional metal-halide perovskites

    Full text link
    Two-dimensional layered perovskites are attracting increasing attention as more robust analogues to the conventional three-dimensional metal-halide perovskites for both light harvesting and light emitting applications. However, the impact of the reduced dimensionality on the optoelectronic properties remains unclear, particularly regarding the spatial dynamics of the excitonic excited state within the two-dimensional plane. Here, we present direct measurements of exciton transport in single-crystalline layered perovskites. Using transient photoluminescence microscopy, we show that excitons undergo an initial fast diffusion through the crystalline plane, followed by a slower subdiffusive regime as excitons get trapped. Interestingly, the early intrinsic diffusivity depends sensitively on the choice of organic spacer. A clear correlation between lattice stiffness and diffusivity is found, suggesting exciton–phonon interactions to be dominant in the spatial dynamics of the excitons in perovskites, consistent with the formation of exciton–polarons. Our findings provide a clear design strategy to optimize exciton transport in these systemsThis work has been supported by the Spanish Ministry of Economy and Competitiveness through The “María de Maeztu” Program for Units of Excellence in R&D (MDM-2014-0377). M.S. acknowledges the financial support of a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/IN17/11620040. M.S. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 713673. F.P. acknowledges support from the Spanish Ministry for Science, Innovation, and Universities through the state program (PGC2018-097236-A-I00) and through the Ramón y Cajal program (RYC-2017-23253), as well as the Comunidad de Madrid Talent Program for Experienced Researchers (2016-T1/IND-1209). N.A., M.M. and R. D.B. acknowledges support from the Spanish Ministry of Economy, Industry and Competitiveness through Grant FIS2017-86007-C3-1-P (AEI/FEDER, EU). E.P. acknowledges support from the Spanish Ministry of Economy, Industry and Competitiveness through Grant FIS2016-80434-P (AEI/FEDER, EU), the Ramón y Cajal program (RYC-2011- 09345) and the Comunidad de Madrid through Grant S2018/ NMT-4511 (NMAT2D-CM). S.P. acknowledges financial support by the VILLUM FONDEN via the Centre of Excellence for Dirac Materials (Grant No. 11744

    Rompiendo el movimiento Browniano: un análisis sobre difusión anómala

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física Teórica de la Materia Condensada. Fecha de Lectura: 18-03-2022Esta tesis tiene embargado el acceso al texto completo hasta el 18-09-202

    Halide mixing inhibits exciton transport in two-dimensional perovskites despite phase purity

    Full text link
    Halide mixing is one of the most powerful techniques to tune the optical bandgap of metal-halide perovskites. However, halide mixing has commonly been observed to result in phase segregation, which reduces excited-state transport and limits device performance. While the current emphasis lies on the development of strategies to prevent phase segregation, it remains unclear how halide mixing may affect excited-state transport even if phase purity is maintained. Here, we study exciton transport in phase pure mixed-halide 2D perovskites of (PEA)2Pb(I1-xBrx)4. Using transient photoluminescence microscopy, we show that, despite phase purity, halide mixing inhibits exciton transport. We find a significant reduction even for relatively low alloying concentrations. By performing Brownian dynamics simulations, we are able to reproduce our experimental results and attribute the decrease in diffusivity to the energetically disordered potential landscape that arises due to the intrinsic random distribution of alloying sitesThis work has been supported by the Spanish Ministry of Economy and Competitiveness through the “Mari ́ a de Maeztu” Program for Units of Excellence in R&D (MDM-2014-0377). M.S. acknowledges the financial support through a Doc.Mobility Fellowship from the Swiss National Science Foundation (SNF) with grant number 187676. In addition, M.S. acknowledges the financial support of a fellowship from ”la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/IN17/11620040. Further, M.S. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 713673. F.P. acknowledges support from the Spanish Ministry for Science, Innovation, and Universities through the state program (PGC2018-097236-A-I00) and through the Ramón y Cajal program (RYC-2017-23253), as well as the Comunidad de Madrid Talent Program for Experienced Researchers (2016-T1/IND-1209). M.M., N.C., and R.D.B. acknowledge support from the Spanish Ministry of Economy, Industry, and Competitiveness through Grant FIS2017-86007-C3-1-P (AEI/FEDER, EU). D.N.C. acknowledges the support of the Rowland Fellowship at the Rowland Institute at Harvard University and the Department of Electrical Engineering at Stanford University. M.K.G. acknowledges the support of National Science Foundation Track 1 EPSCoR funding under the grant no. 1757220. D.A.K. acknowledges the support of a Rowland Foundation Postdoctoral Fellowshi
    corecore