132 research outputs found

    Comparative Evaluation of the Nanosphere Verigene RV+ Assay and the Simplexa Flu A/B & RSV Kit for Detection of Influenza and Respiratory Syncytial Viruses

    Get PDF
    Using retrospective (n = 200) and prospective (n = 150) nasopharyngeal specimens, we evaluated the Nanosphere Verigene RV+ and the Focus Diagnostics Simplexa Flu A/B & RSV tests. Overall, RV+ demonstrated sensitivities and specificities of 96.6% and 100% for influenza A virus, 100% and 99.7% for influenza B virus, and 100% and 100% for respiratory syncytial virus (RSV), while the Simplexa test sensitivities and specificities were 82.8 and 99.7%, 76.2 and 100%, and 94.6 and 100%, respectively

    Comparison of Matrix-Assisted Laser Desorption Ionization–Time of Flight (MALDI-TOF) Mass Spectrometry Platforms for the Identification of Gram-Negative Rods from Patients with Cystic Fibrosis

    Get PDF
    We evaluated the performance of the Bruker Biotyper and the bioMérieux Vitek MS with both the SARAMIS v4.09 and Knowledge Base v2.0 databases for the identification of 203 non-glucose-fermenting Gram-negative rods that had previously been identified by 16S rRNA gene sequencing. Including those that underwent repeat testing, 96.6%, 90.1%, and 93.6% of isolates, respectively, had identifications that agreed with the previous identification

    Development of a Treatment Algorithm for Streptococci and Enterococci from Positive Blood Cultures Identified with the Verigene Gram-Positive Blood Culture Assay

    Get PDF
    Seventy-eight blood cultures with a Gram stain result of Gram-positive cocci in pairs and/or chains were evaluated with the Nanosphere Verigene Gram-positive blood culture (BC-GP) assay. The overall concordance of the assay with culture was 89.7% (70/78 cultures), allowing for the development of a targeted treatment algorithm

    Clinical Outcomes with Rapid Detection of Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Isolates from Routine Blood Cultures

    Get PDF
    Staphylococcus aureus is a common cause of bacteremia, with a substantial impact on morbidity and mortality. Because of increasing rates of methicillin-resistant Staphylococcus aureus, vancomycin has become the standard empirical therapy. However, beta-lactam antibiotics remain the best treatment choice for methicillin-susceptible strains. Placing patients quickly on the optimal therapy is one goal of antimicrobial stewardship. This retrospective, observational, single-center study compared 33 control patients utilizing only traditional full-susceptibility methodology to 22 case patients utilizing rapid methodology with CHROMagar medium to detect and differentiate methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains hours before full susceptibilities were reported. The time to targeted therapy was statistically significantly different between control patients (mean, 56.5 ± 13.6 h) and case patients (44.3 ± 17.9 h) (P = 0.006). Intensive care unit status, time of day results emerged, and patient age did not make a difference in time to targeted therapy, either singly or in combination. Neither length of stay (P = 0.61) nor survival (P = 1.0) was statistically significantly different. Rapid testing yielded a significant result, with a difference of 12.2 h to targeted therapy. However, there is still room for improvement, as the difference in time to susceptibility test result between the full traditional methodology and CHROMagar was even larger (26.5 h). This study supports the hypothesis that rapid testing plays a role in antimicrobial stewardship by getting patients on targeted therapy faster

    Impact of a Rapid Microarray-Based Assay for Identification of Positive Blood Cultures for Treatment Optimization for Patients with Streptococcal and Enterococcal Bacteremia

    Get PDF
    Implementation of the Verigene Gram-positive blood culture test led to reductions in time to acceptable antibiotic overall (1.9 versus 13.2 h, respectively; P = 0.04) and time to appropriate antibiotic for patients with vancomycin-resistant Enterococcus (4.2 versus 43.7 h; P = 0.006) and viridans group Streptococcus (0.2 versus 7.1 h; P = 0.02)

    A Deviation from the Bipolar-Tetrapolar Mating Paradigm in an Early Diverged Basidiomycete

    Get PDF
    In fungi, sexual identity is determined by specialized genomic regions called MAT loci which are the equivalent to sex chromosomes in some animals and plants. Usually, only two sexes or mating types exist, which are determined by two alternate sets of genes (or alleles) at the MAT locus (bipolar system). However, in the phylum Basidiomycota, a unique tetrapolar system emerged in which four different mating types are generated per meiosis. This occurs because two functionally distinct molecular recognition systems, each encoded by one MAT region, constrain the selection of sexual partners. Heterozygosity at both MAT regions is a pre-requisite for mating in both bipolar and tetrapolar basidiomycetes. Tetrapolar mating behaviour results from the absence of genetic linkage between the two regions bringing forth up to thousands of mating types. The subphylum Pucciniomycotina, an early diverged lineage of basidiomycetes encompassing important plant pathogens such as the rusts and saprobes like Rhodosporidium and Sporidiobolus, has been so far poorly explored concerning the content and organization of MAT loci. Here we show that the red yeast Sporidiobolus salmonicolor has a mating system unlike any previously described because occasional disruptions of the genetic cohesion of the bipolar MAT locus originate new mating types. We confirmed that mating is normally bipolar and that heterozygosity at both MAT regions is required for mating. However, a laboratory cross showed that meiotic recombination may occur within the bipolar MAT locus, explaining tetrapolar features like increased allele number and evolution rates of some MAT genes. This pseudo-bipolar system deviates from the classical bipolar–tetrapolar paradigm and, to our knowledge, has never been observed before. We propose a model for MAT evolution in the Basidiomycota in which the pseudo-bipolar system may represent a hitherto unforeseen gradual form of transition from an ancestral tetrapolar system to bipolarity

    Transcription Factors Mat2 and Znf2 Operate Cellular Circuits Orchestrating Opposite- and Same-Sex Mating in Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from a unicellular yeast to multicellular hyphae during opposite sex (mating) and unisexual reproduction (same-sex mating). Opposite- and same-sex mating are induced by similar environmental conditions and involve many shared components, including the conserved pheromone sensing Cpk1 MAPK signal transduction cascade that governs the dimorphic switch in C. neoformans. However, the homeodomain cell identity proteins Sxi1α/Sxi2a encoded by the mating type locus that are essential for completion of sexual reproduction following cell–cell fusion during opposite-sex mating are dispensable for same-sex mating. Therefore, identification of downstream targets of the Cpk1 MAPK pathway holds the key to understanding molecular mechanisms governing the two distinct developmental fates. Thus far, homology-based approaches failed to identify downstream transcription factors which may therefore be species-specific. Here, we applied insertional mutagenesis via Agrobacterium-mediated transformation and transcription analysis using whole genome microarrays to identify factors involved in C. neoformans differentiation. Two transcription factors, Mat2 and Znf2, were identified as key regulators of hyphal growth during same- and opposite-sex mating. Mat2 is an HMG domain factor, and Znf2 is a zinc finger protein; neither is encoded by the mating type locus. Genetic, phenotypic, and transcriptional analyses of Mat2 and Znf2 provide evidence that Mat2 is a downstream transcription factor of the Cpk1 MAPK pathway whereas Znf2 functions as a more terminal hyphal morphogenesis determinant. Although the components of the MAPK pathway including Mat2 are not required for virulence in animal models, Znf2, as a hyphal morphology determinant, is a negative regulator of virulence. Further characterization of these elements and their target circuits will reveal genes controlling biological processes central to fungal development and virulence

    Pratiques et représentations linguistiques en Guyane : regards croisés

    No full text
    corecore