98 research outputs found

    THE DECAY OF NEPTUNIUM-238

    Get PDF
    >A study was made of the energy levels of Pu/sup 238/ which are populated by Np/sup 238/ beta decay, by an examination of the Np/sup 238/ conversion electron spectrum in high-resolution beta spectrographs. The general features of the level scheme as previously given were unchanged but several new transitions were observed, with energies of 119.8, 871, 943, 989, and 1034 kev. Two new levels are postulated at 915 and 1034 kev which accommodate all but the 943-kev transition. A possible assignment of the 943-kev transition to the (0+.0) state of the beta vibrational band is discussed. In addition, the weak 885-kev transition from the 2+ state of the gamma -vibrational band to the 4+ state of the ground band was seen and its relative intensity determined. Comparisons were made of the experimental relative transition intensities of the three photons depopulating this band with those predicted from the rules of Alaga et al.; only fair agreement was noted. A discussion is given of the beta decay branchings and log ft values of Np/sup 238/ decay in terms of the postulated characters of the Pu/sup 238/ states and the measured spin of Np/sup 238/. (auth

    Optical radiation from the interaction of energetic atoms, ions, electrons, and photons with surfaces

    Get PDF
    Heavy particle, electron, and UV photon bombardment of solid surfaces has been recently observed to result in the emission of infrared, visible, and ultraviolet radiation. This effect occurs over a wide range of incident projectile energies. Line radiation arising from transitions between discrete atomic or molecular levels may be attributed to the decay of excited particles which have been sputtered or electronically/chemically desorbed from the surface. Broadband continuum radiation, which is also observed, is believed to arise either from fluorescence of the near surface bulk or from the radiative decay of desorbed excited clusters. Spacecraft, in the ambient near Earth environment, are subject to such bombardment. The dynamics of energetic particle and photon beam interactions with surfaces which lead to surface erosion and glow phenomena will be treated. In addition, projected experimental and theoretical studies of oxygen and nitrogen beam surface interactions on materials characteristic of spacecraft surfaces will be discussed

    The production of low-energy neutral oxygen beams by grazing-incidence neutralization

    Get PDF
    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded

    Analytical and experimental investigation of the feasibility of accelerated lifetime testing of materials exposed to an atomic oxygen beam

    Get PDF
    The interaction of atomic particles with surfaces is of both scientific and technological interest. Past work emphasizes the measurement of high-energy sputtering yields. Very little work utilized low-energy beams for which chemical and electronic effects can be important. Even less work has been carried out using well-defined low-energy projectiles. The use of low-energy, reactive projectiles permits one to investigate surface processes that have not been well characterized. As the energy of the projectile decreases, the collisional cascades and spikes, that are common for high-energy projectiles, become less important, and chemical and electronic effects can play a significant role. Aspects of particle-surface interactions are of concern in several areas of technology. For example, the erosion, desorption, and glow of surfaces of spacecraft in orbit are important in the arena of space technology. The materials studied under this contract are of possible use on the exterior portions of the power generation system of Space Station Freedom. Under the original designs, Space Station Freedom's power generation system would generate potential differences on the surface as high as 200 volts. Ions in the plasma that often surround orbiting vehicles would be accelerated by these potentials leading to bombardment and erosion of the exposed surfaces. The major constituent of the atmosphere, approximately 90 percent, in the low earth orbit region is atomic oxygen. Since atomic oxygen is extremely reactive with most materials, chemical effects can arise in addition to the physical sputtering caused by the acceleration of the oxygen ions. Furthermore, the incident oxygen ions can remain embedded in the exposed surfaces, altering the chemical composition of the surfaces. Since the effective binding energy of a chemically altered surface can be quite different from that of the pure substrate, the sputtering yield of a chemically altered surface is usually different also. The low-energy O+ sputtering yield measurements, reported here, will help quantify the erosion rates for materials exposed to the low-earth orbit environment. These measurements are of technological importance in another respect. In most surface analysis techniques, a surface is bombarded with ions, electrons or photons. Information concerning the structure of the surface and near-surface bulk, abundance of impurities and defects, as well as other surface properties are obtained either from the desorbed species or from the scattered projectiles. Because of their low penetration depth, low-energy ions provide an advantage over other techniques because they provide information that is more indicative of conditions on the surface rather than integrated effects arising from deeper in the bulk. A better understanding of the microscopic processes involved in these interactions is not only of basic scientific interest, but will also aid the scientific community by increasing the accuracy and usefulness of these surface analysis techniques

    Neutralizer and sample chamber for the Atomic Oxygen Simulation System (AOSS)

    Get PDF
    A neutralizer system capable of converting a beam of oxygen ions (O(+) or O2(+)) into a beam of low-energy neutral oxygen atoms (O) was developed. The neutralizer system is to be designed to be compatible with the Atomic Oxygen Simulation System (AOSS) located in the Physical Science Branch of MSFC. The Center for Molecular and Atomic Studies at Surfaces (CMASS) at Vanderbilt University has met these objectives by developing a system that neutralizes the ions through electron transfer during a grazing-incidence reflection of an ion beam from a smooth nickel surface. The purpose is to describe the system, provide schematic representations of the system, and to discuss the use of the system in relation to the AOSS at the Physical Science Branch of MSFC

    Point defect formation in optical materials expos ed to the space environment

    Get PDF
    Point defect formation associated with early stages of optical damage was observed unexpectedly in two, and possibly three, different optical materials subjected to short-duration space exposure. Three calcium fluoride, two lithium fluoride, and three magnesium fluoride samples were flown on Space Shuttle flight STS-46 as part of the Evaluation of Oxygen Interactions with Materials - Third Phase experiment. One each of the calcium and magnesium fluoride samples was held at a fixed temperature of 60 C during the space exposure, while the temperatures of the other samples were allowed to vary with the ambient temperature of the shuttle cargo bay. Pre-flight and post-flight optical absorption measurements were performed on all of the samples. With the possible exception of the magnesium fluoride samples, every sample clearly showed the formation of F-centers in that section of the sample that was exposed to the low earth orbit environment. Solar vacuum ultraviolet radiation is the most probable primary cause of the defect formation; however, the resulting surface metallization may be synergistically altered by the atomic oxygen environment

    酸化物ガラスの塩基度と XPS による O1s 化学シフトの相関に関する考察

    Get PDF
    O1s binding energy measured by X-ray photoelectron spectroscopy (XPS) is candidate as a new tool to determine a new scale of Lewis basicity of oxide ions in glass. Some mathematical expressions for the basicity or XPS chemical shift, such as charge parameter and optical basicity, were compared with the experimental O1s binding energy in binary alkali oxide glasses. The expressions so far in use needed some modification in parameters. A new empirical expression introduced in this paper gives a new concept and universal scale of basicity

    A Program for At-Risk High School Students Informed by Evolutionary Science

    Get PDF
    Improving the academic performance of at-risk high school students has proven difficult, often calling for an extended day, extended school year, and other expensive measures. Here we report the results of a program for at-risk 9th and 10th graders in Binghamton, New York, called the Regents Academy that takes place during the normal school day and year. The design of the program is informed by the evolutionary dynamics of cooperation and learning, in general and for our species as a unique product of biocultural evolution. Not only did the Regents Academy students outperform their comparison group in a randomized control design, but they performed on a par with the average high school student in Binghamton on state-mandated exams. All students can benefit from the social environment provided for at-risk students at the Regents Academy, which is within the reach of most public school districts
    corecore