154 research outputs found

    A time-space varying speed of light and the Hubble Law in static Universe

    Get PDF
    We consider a hypothetical possibility of the variability of light velocity with time and position in space which is derived from two natural postulates. For the consistent consideration of such variability we generalize translational transformations of the Theory of Relativity. The formulae of transformations between two rest observers within one inertial system are obtained. It is shown that equality of velocities of two particles is as relative a statement as simultaneity of two events is. We obtain the expression for the redshift of radiation of a rest source which formally reproduces the Hubble Law. Possible experimental implications of the theory are discussed.Comment: 7 page

    Variable-Speed-of-Light Cosmology from Brane World Scenario

    Get PDF
    We argue that the four-dimensional universe on the TeV brane of the Randall-Sundrum scenario takes the bimetric structure of Clayton and Moffat, with gravitons traveling faster than photons instead, while the radion varies with time. We show that such brane world bimetric model can thereby solve the flatness and the cosmological constant problems, provided the speed of a graviton decreases to the present day value rapidly enough. The resolution of other cosmological problems such as the horizon problem and the monopole problem requires supplementation by inflation, which may be achieved by the radion field provided the radion potential satisfies the slow-roll approximation.Comment: 18 pages, LaTeX, revised version to appear in Phys. Rev.

    Cosmic Numbers: A Physical Classification for Cosmological Models

    Get PDF
    We introduce the notion of the cosmic numbers of a cosmological model, and discuss how they can be used to naturally classify models according to their ability to solve some of the problems of the standard cosmological model.Comment: 3 pages, no figures. v2: Two references added, cosmetic changes. Version to appear in Phys. Rev. D (Brief reports

    Dynamical System Approach to Cosmological Models with a Varying Speed of Light

    Get PDF
    Methods of dynamical systems have been used to study homogeneous and isotropic cosmological models with a varying speed of light (VSL). We propose two methods of reduction of dynamics to the form of planar Hamiltonian dynamical systems for models with a time dependent equation of state. The solutions are analyzed on two-dimensional phase space in the variables (x,x˙)(x, \dot{x}) where xx is a function of a scale factor aa. Then we show how the horizon problem may be solved on some evolutional paths. It is shown that the models with negative curvature overcome the horizon and flatness problems. The presented method of reduction can be adopted to the analysis of dynamics of the universe with the general form of the equation of state p=γ(a)ϵp=\gamma(a)\epsilon. This is demonstrated using as an example the dynamics of VSL models filled with a non-interacting fluid. We demonstrate a new type of evolution near the initial singularity caused by a varying speed of light. The singularity-free oscillating universes are also admitted for positive cosmological constant. We consider a quantum VSL FRW closed model with radiation and show that the highest tunnelling rate occurs for a constant velocity of light if c(a)anc(a) \propto a^n and 1<n0-1 < n \le 0. It is also proved that the considered class of models is structurally unstable for the case of n<0n < 0.Comment: 18 pages, 5 figures, RevTeX4; final version to appear in PR

    Holographic Description of AdS Cosmologies

    Full text link
    To gain insight in the quantum nature of the big bang, we study the dual field theory description of asymptotically anti-de Sitter solutions of supergravity that have cosmological singularities. The dual theories do not appear to have a stable ground state. One regularization of the theory causes the cosmological singularities in the bulk to turn into giant black holes with scalar hair. We interpret these hairy black holes in the dual field theory and use them to compute a finite temperature effective potential. In our study of the field theory evolution, we find no evidence for a "bounce" from a big crunch to a big bang. Instead, it appears that the big bang is a rare fluctuation from a generic equilibrium quantum gravity state.Comment: 34 pages, 8 figures, v2: minor changes, references adde

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change

    Flavour structure of low-energy hadron pair photoproduction

    Full text link
    We consider the process γγH1Hˉ2\gamma\gamma\to H_1\bar H_2 where H1H_1 and H2H_2 are either mesons or baryons. The experimental findings for such quantities as the ppˉp\bar p and KSKSK_SK_S differential cross sections, in the energy range currently probed, are found often to be in disparity with the scaling behaviour expected from hard constituent scattering. We discuss the long-distance pole--resonance contribution in understanding the origin of these phenomena, as well as the amplitude relations governing the short-distance contribution which we model as a scaling contribution. When considering the latter, we argue that the difference found for the KSKSK_SK_S and the K+KK^+K^- integrated cross sections can be attributed to the s-channel isovector component. This corresponds to the ρωa\rho\omega\to a subprocess in the VMD (vector-meson-dominance) language. The ratio of the two cross sections is enhanced by the suppression of the ϕ\phi component, and is hence constrained. We give similar constraints to a number of other hadron pair production channels. After writing down the scaling and pole--resonance contributions accordingly, the direct summation of the two contributions is found to reproduce some salient features of the ppˉp\bar p and K+KK^+K^- data.Comment: 12 pages, 9 figures, revised version to be published in EPJ

    Quintessence and variation of the fine structure constant in the CMBR

    Get PDF
    We study dependence of the CMB temperature anisotropy spectrum on the value of the fine structure constant α\alpha and the equation of state of the dark energy component of the total density of the universe. We find that bounds imposed on the variation of α\alpha from the analysis of currently available CMB data sets can be significantly relaxed if one also allows for a change in the equation of state.Comment: 5 pages, 3 figures. Several references added and a few minor typos corrected in the revised versio

    2d Stringy Black Holes and Varying Constants

    Full text link
    Motivated by the recent interest on models with varying constants and whether black hole physics can constrain such theories, two-dimensional charged stringy black holes are considered. We exploit the role of two-dimensional stringy black holes as toy models for exploring paradoxes which may lead to constrains on a theory. A two-dimensional charged stringy black hole is investigated in two different settings. Firstly, the two-dimensional black hole is treated as an isolated object and secondly, it is contained in a thermal environment. In both cases, it is shown that the temperature and the entropy of the two-dimensional charged stringy black hole are decreased when its electric charge is increased in time. By piecing together our results and previous ones, we conclude that in the context of black hole thermodynamics one cannot derive any model independent constraints for the varying constants. Therefore, it seems that there aren't any varying constant theories that are out of favor with black hole thermodynamics.Comment: 12 pages, LaTeX, to appear in JHE

    Charge conservation and time-varying speed of light

    Get PDF
    It has been recently claimed that cosmologies with time dependent speed of light might solve some of the problems of the standard cosmological scenario, as well as inflationary scenarios. In this letter we show that most of these models, when analyzed in a consistent way, lead to large violations of charge conservation. Thus, they are severly constrained by experiment, including those where cc is a power of the scale factor and those whose source term is the trace of the energy-momentum tensor. In addition, early Universe scenarios with a sudden change of cc related to baryogenesis are discarded.Comment: 4 page
    corecore