3 research outputs found

    Validation of positional candidates Rps6ka6 and Pou3f4 for a locus associated with skeletal muscle mass variability

    Get PDF
    Open Acess via the OUP Agreement Acknowledgments Authors are grateful for Mr James Archibald for assistance with histological analysis of muscle samples and for the Microscopy and Histology Core Facility at the University of Aberdeen for the help with imaging. Funding A.L. was supported by awards AR052879 and AR056280 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases, award 249156 from the FP7-PEOPLE-2009-RG programme, award CGA/18/05 from the Chief Scientist Office, award 21/019 from the NHS Grampian, and award 204815/Z/16/Z from the Wellcome Trust. T.M.C. was supported by NIH R01 DC016595. P.M.B. was supported by NIH R01 DC016595, NIH F31 DC019824, and TL1TR001431. Research reported in this article was supported by the National Center for Advancing Translational Sciences under award number TL1TR001431. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.Peer reviewe

    Investigation of the cardiac depressant effect of Caralluma tuberculate N.E.Br on isolated rabbit heart

    Get PDF
    Purpose: To investigate the histopathological and cardiac depressant effect of the aqueous methanol extract of Caralluma tuberculata N.E. Br (AMECT) (family: Asclepiadaceae)’ and to determine if there is a scientific basis for its cardiovascular diseases-related folkloric use. Methods: The effect of AMECT in different concentrations ranging from 0.00001 to 1.0 mg/mL were evaluated in isolated perfused rabbit heart to assess their effect on the force of contraction and heart rate using Langendorff’s apparatus. Atropine and adrenaline were used to identify the underlying mechanism of response produced by AMECT. The extract was studied for its possible mechanism in the absence and presence of atropine and adrenaline. In addition, sub-chronic toxicity and histopathological study of heart tissues in rats were assessed by administering 500 mg/kg of extract. Results: At all concentrations, AMECT produced significant (p < 0.001) negative ionotropic and negative chronotropic effects. The most significant effect was observed at 0.001 mg/mL and higher concentrations hence 0.001 mg/mL was selected for further studies. Pre-incubation with atropine did not significantly inhibit the effects of AMECT. However, AMECT significantly (p < 0.01) blocked the cardiac stimulant effect of adrenaline. In the histopathological studies, AMECT did not produce any significant cellular changes or signs of toxicity in the sub-chronic toxicity study. Conclusion: The cardiac-depressant responses of AMECT may involve the β-adrenergic receptors in the myocardium of isolated rabbit heart thus confirming the rationale for its use in ethnomedicine for cardiac diseases
    corecore