32 research outputs found

    Effective detection of human adenovirus in hawaiian waters using enhanced pcr methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current criteria for recreational water quality evaluation are primarily based on measurements of fecal indicator bacteria growth. However, these criteria often fail to predict the presence of waterborne human pathogenic viruses. To explore the possibility of direct use of human enteric viruses as improved human fecal contamination indicators, human adenovirus (HAdV) was tested as a model in this study.</p> <p>Findings</p> <p>In order to establish a highly sensitive protocol for effective detection of HAdV in aquatic environments, sixteen published PCR primer sets were re-optimized and comparatively evaluated. Primer sets nehex3deg/nehex4deg, ADV-F/ADV-R, and nested PCR primer sets hex1deg/hex2deg and nehex3deg/nehex4deg were identified to be the most sensitive ones, with up to 1,000 fold higher detection sensitivity compared to other published assays. These three PCR protocols were successfully employed to detect HAdV in both treated and untreated urban wastewaters, and also in 6 of 16 recreational water samples collected around the island of Oahu, Hawaii.</p> <p>Conclusions</p> <p>Findings from this study support the possible use of enteric viruses for aquatic environmental monitoring, specifically for the essential routine monitoring of Hawaiian beach waters using the optimized PCR protocol to detect HAdV at certain water sites to ensure a safe use of recreational waters.</p

    Identification of human and animal adenoviruses and polyomaviruses for determination of sources of fecal contamination in the environment

    No full text
    The Adenoviridae and Polyomaviridae families comprise a wide diversity of viruses which may be excreted for long periods in feces or urine. In this study, a preliminary analysis of the prevalence in the environment and the potential usefulness as source-tracking tools of human and animal adenoviruses and polyomaviruses has been developed. Molecular assays based on PCR specifically targeting human adenoviruses (HAdV), porcine adenoviruses (PAdV), bovine adenoviruses (BAdV), and bovine polyomaviruses (BPyV) were applied to environmental samples including urban sewage, slaughterhouse, and river water samples. PAdV and BPyV were detected in a very high percentage of samples potentially affected by either porcine or bovine fecal contamination, respectively. However, BAdV were detected in only one sample, showing a lower prevalence than BPyV in the wastewater samples analyzed. The 22 slaughterhouse samples with fecal contamination of animal origin showed negative results for the presence of HAdV. The river water samples analyzed were positive for the presence of both human and animal adenoviruses and polyomaviruses, indicating the existence of diverse sources of contamination. The identities of the viruses detected were confirmed by analyses of the amplified sequences. All BPyV isolates showed a 97% similarity in nucleotide sequences. This is the first time that PAdV5, BAdV6, and BPyV have been reported to occur in environmental samples. Human and porcine adenoviruses and human and bovine polyomaviruses are proposed as tools for evaluating the presence of viral contamination and for tracking the origin of fecal/urine contamination in environmental samples

    Development of a qPCR assay for the quantification of porcine adenoviruses as an MST tool for swine fecal contamination in the environment

    No full text
    The Adenoviridae family comprises a wide diversity of viruses that may be excreted for long periods in feces or urine. Previous studies have suggested that the detection of human and animal adenoviruses as well as human and animal polyomaviruses by PCR could be used as an index of fecal contamination of human and animal origin. In this study, quantitative PCR assays targeting specifically porcine adenoviruses have been developed and applied to fecal and environmental samples, including pig slurries, urban sewage, slaughterhouse sewage and river water samples. To develop real-time quantitative PCR for the detection and quantitation of porcine adenoviruses, primers and a TaqMan probe targeting a 68-bp region of the porcine adenovirus hexon gene were designed to amplify specifically porcine adenovirus, and the conditions of the reaction were optimized. The assay detected 1-10 genome copies per test tube and was specific in showing no positive results when samples containing human or bovine adenoviruses were analyzed. Fecal samples contained mean concentrations of porcine adenoviruses of 10(5) GC/g while slaughterhouse wastewater samples showed mean values of 10(3) GC/ml. The assay detected porcine fecal pollution in samples that were highly diluted and had been collected at a considerable distance from the input source, such as river water. In general, the data presented here provide a quantitative tool for the analysis of porcine adenoviruses as indicators of the presence of porcine contamination in the environment, and support the detection of porcine adenoviruses by real-time quantitative PCR as a promising and valuable tool for source-tracking studies

    Quantification of human adenoviruses in European recreational waters

    Get PDF
    The presence of human adenoviruses in recreational water might cause disease in the population upon exposure. Human adenoviruses detected by PCR could also serve as indicators of the virological water quality. In order to assess the applicability of human adenoviruses to the evaluation of the faecal contamination in European bathing waters, a real-time quantitative PCR assay was developed for the quantification of human adenoviruses in 132 samples collected from 24 different recreational marine and freshwater sites in nine European countries. Selected samples presenting positive nested-PCR results for human adenoviruses were analyzed using quantitative PCR and 80 samples from a total of 132 produced quantitative results with mean values of 3.2x102 10 per 100 ml of water, human adenovirus 41 being the most prevalent serotype. Human adenoviruses were quantified in samples from all 15 surveillance laboratories. Statistical analysis showed no homogeneous linear relation between human adenoviruses and E. coli, intestinal enterococci or somatic coliphages concentrations in the tested samples when considering all the data together. Significant correlations between human adenoviruses and at least one of the other indicators were observed only when data from individual Laboratories were considered. The quantification of human adenoviruses may provide complementary information in relation to the use of bacterial standards in the control of water quality in bathing water
    corecore