12 research outputs found

    Wastewater Treatment by a Polymeric Bioflocculant and Iron Nanoparticles Synthesized from a Bioflocculant

    No full text
    Wastewater remains a global challenge. Various methods have been used in wastewater treatment, including flocculation. The aim of this study was to synthesize iron nanoparticles (FeNPs) using a polymeric bioflocculant and to evaluate its efficacy in the removal of pollutants in wastewater. A comparison between the efficiencies of the bioflocculant and iron nanoparticles was investigated. A scanning electron microscope (SEM) equipped with an energy-dispersive X-ray analyzer (EDX) and Fourier transform-infrared (FT-IR) spectroscopy were used to characterize the material. SEM-EDX analysis revealed the presence of elements such as O and C that were abundant in both samples, while FT-IR studies showed the presence of functional groups such as hydroxyl (–OH) and amine (–NH2). Fe nanoparticles showed the best flocculation activity (FA) at 0.4 mg/mL dosage as opposed to that of the bioflocculant, which displayed the highest flocculation activity at 0.8 mg/mL, and both samples were found to be cation-dependent. When evaluated for heat stability and pH stability, FeNPs were found thermostable with 86% FA at 100 °C, while an alkaline pH of 11 favored FA with 93%. The bioflocculant flocculated poorly at high temperature and was found effective mostly at a pH of 7 with over 90% FA. FeNPs effectively removed BOD (biochemical oxygen demand) and COD (chemical oxygen demand) in all two wastewater samples from coal mine water and Mzingazi River water. Cytotoxicity results showed both FeNPs and the bioflocculant as nontoxic at concentrations up to 50 µL

    Removal of Pollutants in Mine Wastewater by a Non-Cytotoxic Polymeric Bioflocculant from Alcaligenes faecalis HCB2

    No full text
    Bioflocculation is a physicochemical technique often employed to efficiently remove colloidal water pollutants. Consequently, in this study, a bioflocculant was produced, characterised and applied to remove pollutants in mine wastewater. The maximum flocculation activity of 92% was recorded at 30 °C, pH 9.0 when maltose and urea were used as energy sources and 72 h of fermentation at the inoculum size of 1% (v/v). K+ proved to be a favourable cation. The bioflocculant yield of 4 g/L was obtained. Scanning electron microscopy illustrated a hexagonal-like structure of the bioflocculant. It is composed of carbohydrates and proteins in mass proportion of 88.6 and 9.5%, respectively. The Fourier transform infrared spectrum revealed the presence of hydroxyl, amide and amino functional groups. More than 73% of the bioflocculant was obtained after exposure to 600 °C using the thermogravimetric analyser. Human embryonic kidney 293 (HEK 293) cells exhibited 95% viability after being treated with 200 µg/µL of the bioflocculant. The flocculation mechanisms were proposed to be as a result of a double layer compression by K+, chemical reactions and bridging mechanism. The removal efficiencies of 59, 72, and 75% on biological oxygen demand, chemical oxygen demand and sulphur, were obtained respectively. Thus, the bioflocculant have potential use in wastewater treatment

    Synthesis and Characterization of Various Bimetallic Nanoparticles and Their Application

    No full text
    Bimetallic nanoparticles are a complex nanoscale combination of two metal constituents. The superior properties of bimetallic nanoparticles (BNPs) compared with monometallic nanoparticles have attracted much attention from both scientific and technological perspectives. In recent years, many fabrication techniques have been proposed, and the detailed characterization of bimetallic nanoparticles has been made possible by the rapid advancement of nanomaterial analysis techniques. Metallic nanoparticles can be classified according to their origin, size, and structure, and their synthesis process can be physical, chemical, or biological. Bimetallic nanoparticles are more attractive than metal nanoparticles due to their unique mixing patterns and synergistic effects of two metal nanoparticles forming the bimetal. In this review, the different bimetallic synthesis methods and various characterization techniques are discussed. The paper will also discuss various applications for bimetallic nanoparticles. Different characterization techniques for bimetallic nanoparticles include X-ray diffraction (XRD) to investigate crystallinity and phase composition; the morphology and composition analysis of nanoparticles are studied using a scanning electron microscope fitted with an energy-dispersive X-ray analyzer (EDX); transmission electron microscopy (TEM), UV–vis spectrum, FTIR, and TGA analysis are also among the characterization tools used. Finally, we report on the various applications of BNPs, which include antimicrobial activity, pollutant removal, and wastewater application

    Optimization and Application of Bioflocculant Passivated Copper Nanoparticles in the Wastewater Treatment

    No full text
    Nanotechnology offers a great opportunity for efficient removal of pollutants and pathogenic microorganisms in water. Copper nanoparticles were synthesized using a polysaccharide bioflocculant and its flocculation, removal efficiency, and antimicrobial properties were evaluated. The synthesized nanoparticles were characterized using thermogravimetry, UV-Visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), powder X-ray diffraction, scanning electron microscope (SEM), and transmission electron microscope (TEM). The highest flocculation activity (FA) was achieved with the lowest concentration of copper nanoparticles (0.2 mg/mL) with 96% (FA) and the least flocculation activity was 80% at 1 mg/mL. The copper nanoparticles (CuNPs) work well without the addition of the cation as the flocculation activity was 96% and worked best at weak acidic, neutral, and alkaline pH with the optimal FA of 96% at pH 7. Furthermore, the nanoparticles were found to be thermostable with 91% FA at 100 °C. The synthesized copper nanoparticles are also high in removal efficiency of staining dyes, such as safranin (92%), carbol fuchsine (94%), malachite green (97%), and methylene blue (85%). The high removal efficiency of nutrients such as phosphate and total nitrogen in both domestic wastewater and Mzingazi river water was observed. In comparison to ciprofloxacin, CuNPs revealed some remarkable properties as they are able to kill both the Gram-positive and Gram-negative microorganisms

    Synthesis and Application of FeCu Bimetallic Nanoparticles in Coal Mine Wastewater Treatment

    No full text
    Wastewater treatment has become a global challenge with wastewater treatment cost fast increasing. Industrial processes such as downstream processes, wastewater treatment, and several fermentation processes depend largely on the use of flocculants. Synthetic flocculants, which are conventionally used in wastewater treatment, are hazardous to the environment and are carcinogenic to human health. Therefore, bioflocculants can be used as an alternative due to their biodegradable and environmentally friendly nature. However, low efficacy hinders their industrial application. This necessitates the need for a new technology to combat wastewater treatment challenges. Nanotechnology provides the platform to explore the possible solutions to these problems. The combination of two different metals results in the formation of bimetallic nanoparticles (BNPs). Due to better properties, bimetallic nanoparticles have attracted huge attention as compared to monometallic nanoparticles from both technological and scientific views. Iron copper bimetallic nanoparticles (FeCu BNPs) were successfully stabilized by bioflocculant and used in the coal mine wastewater treatment. Infrared spectrometric analysis showed the presence of carboxyl (COO−), hydroxyl (−OH), and amino (−NH2) functional groups. SEM images showed irregular and crystalline like morphology. Meanwhile, TEM analysis revealed chain like agglomerated nanoparticles. FeCu BNPs exhibited a wide pH stability range from 3, 7, and 11 with 99% flocculation activity at pH 7 and at lowest dosage of 0.2 mg/mL. After treating wastewater, the FeCu BNPs could remove pollutants such as phosphate, sulfate, calcium, chemical oxygen demand (COD), and biological oxygen demand (BOD) with phosphate having the highest removal efficacy of 99%

    Performance of Pleurotus ostreatus mushroom grown on maize stalk residues supplemented with various levels of maize flour and wheat bran

    No full text
    Abstract Improving the performance of mushroom in terms of high production and fast growth rate is essential in mushroom cultivation. In the present study the performance of Pleurotus ostreatus was evaluated using varying levels of wheat bran (WB) and maize flour (MF). The results indicated that Pleurotus ostreatus was highly influenced by different levels of supplementation, with 8% WB, 18% WB and 2% MF having higher contamination rate. The low levels of supplementation gave significantly better mycelial growth rate (MGR) and shorter colonisation period as observed that the control had highest MGR whereby 20% MF had lowest MGR. The pinning time (TP) was shortest at the first flush with minimum of 3 days (12% MF). The higher levels of supplementation showed maximum biological efficiency (BE) such as 14% MF, 12% WB and 14% WB. The yield was also higher at high levels of supplementation such as 20% MF and 8% MF being the exception in the lower levels. Based on the results it was observed that for fast production of oyster mushroom there is no need to supplement the maize stalk substrate but for improved productivity supplements can be added up to certain limits such as 14% MF and 12 WB

    Performance of Pleurotus pulmonarius mushroom grown on maize stalk residues supplemented with various levels of maize flour and wheat bran

    No full text
    Abstract The use of supplemented agricultural waste in mushroom cultivation can be one of the environmentally friendly strategies for poverty alleviation. The study evaluated the performance of Pleurotus pulmonarius mushroom grown on maize stalk supplemented with varying levels of wheat bran (WB) and maize flour (MF). A completely random design was used for the experiments. It was observed that Pleurotus pulmonarius was significantly affected by varying levels of supplementation, as 20% WB supplementation encountered higher contamination. The lower supplementation levels gave significantly shorter colonisation period with better mycelial growth rate (MGR). The 2% MF, 2% WB and 4% WB gave significantly higher MGR and faster colonisation. The shortest pinning time (TP) was observed at the first flush with the minimum of 2 days. Higher supplementation levels gave maximum yield and biological efficiency (BE). With further increase of supplementation above a 12% WB and 14% MF, the BE and yield declined. Lower supplementation levels resulted in quicker colonisation period and improved growth rate, whereas high supplementation gave better production in terms of yield and BE. Therefore, for the purpose of maximum production, 12% WB and 14% MF may be recommended while for fast production time, 2% MF and 2% WB are recommended
    corecore