104 research outputs found

    PCN46 HEALTH CARE EXPENDITURES, DISABILITY DAYS, AND RESOURCE UTILIZATION ASSOCIATED WITH CANCER IN EMPLOYER SETTINGS IN THE UNITED STATES

    Get PDF

    A new class of symbolic abstract neural nets

    Get PDF
    Starting from the way the inter-cellular communication takes place by means of protein channels and also from the standard knowledge about neuron functioning, we propose a computing model called a tissue P system, which processes symbols in a multiset rewriting sense, in a net of cells similar to a neural net. Each cell has a finite state memory, processes multisets of symbol-impulses, and can send impulses (?excitations?) to the neighboring cells. Such cell nets are shown to be rather powerful: they can simulate a Turing machine even when using a small number of cells, each of them having a small number of states. Moreover, in the case when each cell works in the maximal manner and it can excite all the cells to which it can send impulses, then one can easily solve the Hamiltonian Path Problem in linear time. A new characterization of the Parikh images of ET0L languages are also obtained in this framework

    Kinetics of active surface-mediated diffusion in spherically symmetric domains

    Full text link
    We present an exact calculation of the mean first-passage time to a target on the surface of a 2D or 3D spherical domain, for a molecule alternating phases of surface diffusion on the domain boundary and phases of bulk diffusion. We generalize the results of [J. Stat. Phys. {\bf 142}, 657 (2011)] and consider a biased diffusion in a general annulus with an arbitrary number of regularly spaced targets on a partially reflecting surface. The presented approach is based on an integral equation which can be solved analytically. Numerically validated approximation schemes, which provide more tractable expressions of the mean first-passage time are also proposed. In the framework of this minimal model of surface-mediated reactions, we show analytically that the mean reaction time can be minimized as a function of the desorption rate from the surface.Comment: Published online in J. Stat. Phy

    Mean first-passage time of surface-mediated diffusion in spherical domains

    Full text link
    We present an exact calculation of the mean first-passage time to a target on the surface of a 2D or 3D spherical domain, for a molecule alternating phases of surface diffusion on the domain boundary and phases of bulk diffusion. The presented approach is based on an integral equation which can be solved analytically. Numerically validated approximation schemes, which provide more tractable expressions of the mean first-passage time are also proposed. In the framework of this minimal model of surface-mediated reactions, we show analytically that the mean reaction time can be minimized as a function of the desorption rate from the surface.Comment: to appear in J. Stat. Phy

    Amine Containing Analogs of Sulindac for Cancer Prevention

    Get PDF
    Background: Sulindac belongs to the chemically diverse family of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) that effectively prevent adenomatous colorectal polyps and colon cancer, especially in patients with familial adenomatous polyposis. Sulindac sulfide amide (SSA), an amide analog of sulindac sulfide, shows insignificant COX-related activity and toxicity while enhancing anticancer activity in vitro and demonstrating in vivo xenograft activity. Objective: Develop structure-activity relationships in the sulindac amine series and identify analogs with promising anticancer activities. Method: A series of sulindac amine analogs were designed and synthesized and then further modified in a “libraries from libraries” approach to produce amide, sulfonamide and N,N-disubstituted sulindac amine sub-libraries. All analogs were screened against three cancer cell lines (prostate, colon and breast). Results: Several active compounds were identified viain vitro cancer cell line screening with the most potent compound (26) in the nanomolar range. Conclusion: Compound 26 and analogs showing the most potent inhibitory activity may be considered for further design and optimization efforts as anticancer hit scaffolds

    Gene silencing: concepts, applications, and perspectives in woody plants

    Full text link
    • 

    corecore