6 research outputs found

    Surface Adsorption from the Exchange-Hole Dipole Moment Dispersion Model

    No full text
    The accurate calculation of intermolecular interaction energies with density functional theory requires methods that include a treatment of long-range, nonlocal dispersion correlation. In this work, we explore the ability of the exchange-hole dipole moment (XDM) dispersion correction to model molecular surface adsorption. Adsorption energies are calculated for six small aromatic molecules (benzene, furan, pyridine, thiophene, thiophenol, and benzenediamine) and the four DNA nucleobases (adenine, thymine, guanine, and cytosine) on the (111) surfaces of the three coinage metals (copper, silver, and gold). For benzene, where the experimental reference data is most precise, the mean absolute error in the computed absorption energies is 0.04 eV. For the other aromatic molecules, the computed binding energies are found to be within 0.09 eV of the available reference data, on average, which is well below the expected experimental uncertainties for temperature-programmed desorption measurements. Unlike other dispersion-corrected functionals, adequate performance does not require changes to the canonical XDM implementation, and the good performance of XDM is explained in terms of the behavior of the exchange hole. Additionally, the base functional employed (B86bPBE) is also optimal for molecular studies, making B86bPBE-XDM an excellent candidate for studying chemistry on material surfaces. Finally, the noncovalent interaction (NCI) plot technique is shown to detect adsorption effects in real space on the order of tenths of an eV

    Atom-Centered Potentials with Dispersion-Corrected Minimal-Basis-Set Hartree–Fock: An Efficient and Accurate Computational Approach for Large Molecular Systems

    No full text
    We present a computational methodology based on atom-centered potentials (ACPs) for the efficient and accurate structural modeling of large molecular systems. ACPs are atom-centered one-electron potentials that have the same functional form as effective-core potentials. In recent works, we showed that ACPs can be used to produce a correction to the ground-state wave function and electronic energy to alleviate shortcomings in the underlying model chemistry. In this work, we present ACPs for H, C, N, and O atoms that are specifically designed to predict accurate non-covalent binding energies and inter- and intramolecular geometries when combined with dispersion-corrected Hartree–Fock (HF-D3) and a minimal basis-set (scaled MINI or MINIs). For example, the combined HF-D3/MINIs-ACP method demonstrates excellent performance, with mean absolute errors of 0.36 and 0.28 kcal/mol for the S22x5 and S66x8 benchmark sets, respectively, relative to highly correlated complete-basis-set data. The application of ACPs results in a significant decrease in error compared to uncorrected HF-D3/MINIs for all benchmark sets examined. In addition, HF-D3/MINIs-ACP, has a cost only slightly higher than a minimal-basis-set HF calculation and can be used with any electronic structure program for molecular quantum chemistry that uses Gaussian basis sets and effective-core potentials

    Atom-Centered Potentials with Dispersion-Corrected Minimal-Basis-Set Hartree–Fock: An Efficient and Accurate Computational Approach for Large Molecular Systems

    No full text
    We present a computational methodology based on atom-centered potentials (ACPs) for the efficient and accurate structural modeling of large molecular systems. ACPs are atom-centered one-electron potentials that have the same functional form as effective-core potentials. In recent works, we showed that ACPs can be used to produce a correction to the ground-state wave function and electronic energy to alleviate shortcomings in the underlying model chemistry. In this work, we present ACPs for H, C, N, and O atoms that are specifically designed to predict accurate non-covalent binding energies and inter- and intramolecular geometries when combined with dispersion-corrected Hartree–Fock (HF-D3) and a minimal basis-set (scaled MINI or MINIs). For example, the combined HF-D3/MINIs-ACP method demonstrates excellent performance, with mean absolute errors of 0.36 and 0.28 kcal/mol for the S22x5 and S66x8 benchmark sets, respectively, relative to highly correlated complete-basis-set data. The application of ACPs results in a significant decrease in error compared to uncorrected HF-D3/MINIs for all benchmark sets examined. In addition, HF-D3/MINIs-ACP, has a cost only slightly higher than a minimal-basis-set HF calculation and can be used with any electronic structure program for molecular quantum chemistry that uses Gaussian basis sets and effective-core potentials

    Accurate Modeling of Water Clusters with Density-Functional Theory Using Atom-Centered Potentials

    No full text
    The ability of atom-centered potentials (ACPs) to improve the modeling of water clusters using density-functional methods is explored. Water-specific ACPs were developed using accurate <i>ab initio</i> reference data to correct the deficiencies of the BHandHLYP density functional in the calculation of absolute and relative binding energies of water clusters. In conjunction with aug-cc-pVTZ basis sets and with or without dispersion corrections, it is possible to obtain absolute binding energies for water clusters containing up to 10 H<sub>2</sub>O molecules to within 0.44 kcal/mol or 0.04 kcal/mol per water molecule. In contrast, dispersion-corrected BHandHLYP/aug-cc-pVTZ predicts binding energies with errors as large as 6 kcal/mol for (H<sub>2</sub>O)<sub>10</sub> in the absence of ACPs. Therefore, the ACPs improve predicted binding energies in these clusters by more than an order of magnitude. The conformers of (H<sub>2</sub>O)<sub>16</sub> and (H<sub>2</sub>O)<sub>17</sub> were used to validate the application of ACPs to larger clusters. ACP-based approaches are able to predict the binding energies in (H<sub>2</sub>O)<sub>16,17</sub> within a range of 0.3–2.2 kcal/mol (less than 1.3%) of recently revised <i>ab initio</i> wave function results. ACPs for basis sets smaller than aug-cc-pVTZ are also presented. However, the ability of the BHandHLYP/ACP approach to predict accurate binding energies deteriorates as the size of the basis sets decreases. Nevertheless, ACPs improve predicted binding energies by as much as a factor of 50 across the range of the basis sets studied. The BHandHLYP/aug-cc-pVTZ-ACP method was applied to (H<sub>2</sub>O)<sub>25</sub> in order to identify the minimum-energy structure of a collection of proposed global minimum-energy structures. The BHandHLYP/aug-cc-pVTZ-ACP approach is an accurate and computationally affordable alternative to wave function theory methods for the prediction of the binding energies and energy ranking of water clusters

    Composite and Low-Cost Approaches for Molecular Crystal Structure Prediction

    No full text
    Molecular crystal structure prediction (CSP) requires evaluating differences in lattice energy between candidate crystal structures accurately and efficiently. In this work, we explore and compare several low-cost alternatives to dispersion-corrected density-functional theory (DFT) in the plane-waves/pseudopotential approximation, the most accurate and general approach used for CSP at present. Three types of low-cost methods are considered: DFT with a small basis set of finite-support numerical orbitals (the SIESTA method), dispersion-corrected Gaussian small or minimal-basis-set Hartree–Fock and DFT with additional empirical corrections (HF-3c and PBEh-3c), and self-consistent-charge dispersion-corrected density-functional tight binding (SCC-DFTB3-D3). In addition, we study the performance of composite methods that comprise a geometry optimization using a low-cost approach followed by a single-point calculation using the accurate but comparatively expensive B86bPBE-XDM functional. All methods were tested for their abilities to produce absolute lattice energies, relative lattice energies, and crystal geometries. We show that assessing various methods by their ability to produce absolute lattice energies can be misleading and that relative lattice energies are a much better indicator of performance in CSP. The EE14 set of relative solubilities of homochiral and heterochiral chiral crystals is proposed for relative lattice-energy benchmarking. Our results show that PBE-D2 plus a DZP basis set of numerical orbitals coupled with a final B86bPBE-XDM single-point calculation gives excellent performance at a fraction of the cost of a full B86bPBE-XDM calculation, although the results are sensitive to the particular details of the computational protocol. The B86bPBE-XDM//PBE-D2/DZP method was subsequently tested in a practical CSP application from our recent work on the crystal structure of the enantiopure and racemate forms of 1-aza[6]­helicene, a chiral organic semiconductor. Our results show that this multilevel method is able to correctly reproduce the energy ranking of both crystal forms

    Carbon Nanotube Chirality Determines Efficiency of Electron Transfer to Fullerene in All-Carbon Photovoltaics

    No full text
    Nanocarbon-based photovoltaics offer a promising new architecture for the next generation of solar cells. We demonstrate that a key factor determining the efficiency of single-walled carbon nanotube (SWCNT)/fullerene devices is the chirality of the SWCNT. This is shown via current density vs voltage measurements of nanocarbon devices prepared with (9,7), (7,6) and (6,5) SWCNTs, as well as density-functional theory (DFT) density of states calculations of C<sub>60</sub> adsorbed onto the corresponding SWCNTs. The trends in efficiency are rationalized in terms of the relative energies of the fullerene and SWCNT conduction band energy levels
    corecore