5 research outputs found

    Exponentially long stability times for a nonlinear lattice in the thermodynamic limit

    Get PDF
    Abstract In this paper, we construct an adiabatic invariant for a large 1-d lattice of particles, which is the so called Klein Gordon lattice. The time evolution of such a quantity is bounded by a stretched exponential as the perturbation parameters tend to zero. At variance with the results available in the literature, our result holds uniformly in the thermodynamic limit. The proof consists of two steps: first, one uses techniques of Hamiltonian perturbation theory to construct a formal adiabatic invariant; second, one uses probabilistic methods to show that, with large probability, the adiabatic invariant is approximately constant. As a corollary, we can give a bound from below to the relaxation time for the considered system, through estimates on the autocorrelation of the adiabatic invariant

    Relaxation times for Hamiltonian systems

    Get PDF
    Usually, the relaxation times of a gas are estimated in the frame of the Boltzmann equation. In this paper, instead, we deal with the relaxation problem in the frame of the dynamical theory of Hamiltonian systems, in which the definition itself of a relaxation time is an open question. We introduce a lower bound for the relaxation time, and give a general theorem for estimating it. Then we give an application to a concrete model of an interacting gas, in which the lower bound turns out to be of the order of magnitude of the relaxation times observed in dilute gases.Comment: 26 page
    corecore