13 research outputs found

    Assessment of aflatoxin M1 enrichment factor in cheese produced with naturally contaminated milk

    Get PDF
    Aflatoxin M1 (AFM1) is a well-known carcinogenic compound that may contaminate milk and dairy products. Thus, with the regulation 1881/2006, the European Union established a concentration limit for AFM1 in milk and insisted on the importance of defining enrichment factors (EFs) for cheese. In 2019, the Italian Ministry of Health proposed four different EFs based on cheese’s moisture content on a fat-free basis (MMFB) for bovine dairy products. This study aimed to define the EFs of cheese with different MFFB. The milk used for cheesemaking was naturally contaminated with different AFM1 concentrations. Results showed that all the EF average values from this study were lower than those of the Italian Ministry of Health. Hence, the current EFs might need to be reconsidered for a better categorization of AFM1 risk in cheese

    Cellular and molecular determinants of all-trans retinoic acid sensitivity in breast cancer: Luminal phenotype and RARα expression

    Get PDF
    Forty-two cell lines recapitulating mammary carcinoma heterogeneity were profiled for all-trans retinoic acid (ATRA) sensitivity. Luminal and ER+ (estrogen-receptor-positive) cell lines are generally sensitive to ATRA, while refractoriness/low sensitivity is associated with a Basal phenotype and HER2 positivity. Indeed, only 2 Basal cell lines (MDA-MB157 and HCC-1599) are highly sensitive to the retinoid. Sensitivity of HCC-1599 cells is confirmed in xenotransplanted mice. Short-term tissue-slice cultures of surgical samples validate the cell-line results and support the concept that a high proportion of Luminal/ER+ carcinomas are ATRA sensitive, while triple-negative (Basal) and HER2-positive tumors tend to be retinoid resistant. Pathway-oriented analysis of the constitutive gene-expression profiles in the cell lines identifies RARα as the member of the retinoid pathway directly associated with a Luminal phenotype, estrogen positivity and ATRA sensitivity. RARα3 is the major transcript in ATRA-sensitive cells and tumors. Studies in selected cell lines with agonists/antagonists confirm that RARα is the principal mediator of ATRA responsiveness. RARα over-expression sensitizes retinoid-resistant MDA-MB453 cells to ATRA anti-proliferative action. Conversely, silencing of RARα in retinoid-sensitive SKBR3 cells abrogates ATRA responsiveness. All this is paralleled by similar effects on ATRA-dependent inhibition of cell motility, indicating that RARα may mediate also ATRA anti-metastatic effects. We define gene sets of predictive potential which are associated with ATRA sensitivity in breast cancer cell lines and validate them in short-term tissue cultures of Luminal/ER+ and triple-negative tumors. In these last models, we determine the perturbations in the transcriptomic profiles afforded by ATRA. The study provides fundamental information for the development of retinoid-based therapeutic strategies aimed at the stratified treatment of breast cancer subtypes

    Squamous cell carcinoma of the larynx with osteosarcoma-like stromal metaplasia.

    No full text
    Osseous or chondroid metaplasias are uncommonly found adjacent to laryngeal squamous cell carcinoma (SCC). These findings are less unusual in the spindle cell variant. We describe a moderately differentiated laryngeal SCC associated with osteocartilaginous metaplasia of the adjacent stroma which exhibited very similar morphologic changes and mitoses to an osteosarcoma. These uncommon findings can be more clearly understood if they are viewed as changes determined by the microenvironment of the tumour-host interface, as indicated in recent studies. Tumour cells seem able to regulate stromal development and differentiation via the release of growth factors and the induction of growth factor receptor expression on the cell surface. Irrespective of the limited number of reported cases, the association of SCCs of the larynx with osteocartilaginous metaplasia does not seem to support the adoption of treatments of choice that differ in approach to those for site- and stage-matched SCCs without osteocartilaginous metaplasia

    LSD1 represses a neonatal/reparative gene program in adult intestinal epithelium

    No full text
    Intestinal epithelial homeostasis is maintained by adult intestinal stem cells, which, alongside Paneth cells, appear after birth in the neonatal period. We aimed to identify regulators of neonatal intestinal epithelial development by testing a small library of epigenetic modifier inhibitors in Paneth cell–skewed organoid cultures. We found that lysine-specific demethylase 1A (Kdm1a/Lsd1) is absolutely required for Paneth cell differentiation. Lsd1-deficient crypts, devoid of Paneth cells, are still able to form organoids without a requirement of exogenous or endogenous Wnt. Mechanistically, we find that LSD1 enzymatically represses genes that are normally expressed only in fetal and neonatal epithelium. This gene profile is similar to what is seen in repairing epithelium, and we find that Lsd1-deficient epithelium has superior regenerative capacities after irradiation injury. In summary, we found an important regulator of neonatal intestinal development and identified a druggable target to reprogram intestinal epithelium toward a reparative state

    Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study

    No full text
    Summary: Background: Enteropathogen infections in early childhood not only cause diarrhoea but contribute to poor growth. We used molecular diagnostics to assess whether particular enteropathogens were associated with linear growth across seven low-resource settings. Methods: We used quantitative PCR to detect 29 enteropathogens in diarrhoeal and non-diarrhoeal stools collected from children in the first 2 years of life obtained during the Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) multisite cohort study. Length was measured monthly. We estimated associations between aetiology-specific diarrhoea and subclinical enteropathogen infection and quantity and attained length in 3 month intervals, at age 2 and 5 years, and used a longitudinal model to account for temporality and time-dependent confounding. Findings: Among 1469 children who completed 2 year follow-up, 35 622 stool samples were tested and yielded valid results. Diarrhoeal episodes attributed to bacteria and parasites, but not viruses, were associated with small decreases in length after 3 months and at age 2 years. Substantial decrements in length at 2 years were associated with subclinical, non-diarrhoeal, infection with Shigella (length-for-age Z score [LAZ] reduction −0·14, 95% CI −0·27 to −0·01), enteroaggregative Escherichia coli (−0·21, −0·37 to −0·05), Campylobacter (−0·17, −0·32 to −0·01), and Giardia (−0·17, −0·30 to −0·05). Norovirus, Cryptosporidium, typical enteropathogenic E coli, and Enterocytozoon bieneusi were also associated with small decrements in LAZ. Shigella and E bieneusi were associated with the largest decreases in LAZ per log increase in quantity per g of stool (−0·13 LAZ, 95% CI −0·22 to −0·03 for Shigella; −0·14, −0·26 to −0·02 for E bieneusi). Based on these models, interventions that successfully decrease exposure to Shigella, enteroaggregative E coli, Campylobacter, and Giardia could increase mean length of children by 0·12–0·37 LAZ (0·4–1·2 cm) at the MAL-ED sites. Interpretation: Subclinical infection and quantity of pathogens, particularly Shigella, enteroaggregative E coli, Campylobacter, and Giardia, had a substantial negative association with linear growth, which was sustained during the first 2 years of life, and in some cases, to 5 years. Successfully reducing exposure to certain pathogens might reduce global stunting. Funding: Bill & Melinda Gates Foundation
    corecore