221 research outputs found

    Tetanus toxin potently stimulates tissue transglutaminase. A possible mechanism of neurotoxicity

    Get PDF
    The observation that tetanus toxin (TT) contains two sequences that show homology to known transglutaminase (TGase) substrate sites suggested that the toxin and TGase might interact. This prediction was confirmed by two pieces of evidence. First, TT potently stimulated the enzymatic activity of TGase. The effect was maximal at physiological (micromolar) concentrations of the endogenous TGase regulators calcium and GTP. Second, TT and TGase displayed marked variations of their intrinsic fluorescence properties when they were coincubated, indicating the occurrence of binding between them. TT-TGase binding and TGase activation occurred at similar concentrations of TT and are probably causally related. The activation of TGase, an enzyme present in nerve endings that, when activated, can irreversibly cross-link cellular proteins, might mediate the neurotoxic action of TT

    Morphogenesis of post-Golgi transport carriers

    Get PDF
    The trans-Golgi network (TGN) is one of the main, if not the main, sorting stations in the process of intracellular protein trafficking. It is therefore of central importance to understand how the key players in the TGN-based sorting and delivery process, the post-Golgi carriers (PGCs), form and function. Over the last few years, modern morphological approaches have generated new insights into the questions of PGC biogenesis, structure and dynamics. Here, we present a view by which the “lifecycle” of a PGC consists of several distinct stages: the formation of TGN tubular export domains (where different cargoes are segregated from each other and from the Golgi enzymes); the docking of these tubular domains onto molecular motors and their extrusion towards the cell periphery along microtubules; the fission of the forming PGC from the donor membrane; and the delivery of the newly formed PGC to its specific acceptor organelle. It is now important to add the many molecular machineries that have been described as operating at the TGN to this “morphofunctional map” of the TGN export process

    Association of the changes in cytosolic Ca2+ and iodide efflux induced by thyrotropin and by the stimulation of alpha 1-adrenergic receptors in cultured rat thyroid cells.

    Get PDF
    Abstract Thyrotropin causes a time- and concentration-dependent increase in cytosolic Ca2+ in FRTL-5 rat thyroid cells as measured by Quin2 fluorescence; the half-maximal response occurs in response to 1 X 10(-7) M thyrotropin. The effect of added thyrotropin is the same whether cells have been previously and chronically exposed to thyrotropin or whether they have been thyrotropin "starved" for several days. The thyrotropin effect on cytosolic Ca2+ has no relationship to intracellular cAMP levels with respect to dose and time course. Norepinephrine (1 X 10(-7) M) also causes increases in cytosolic Ca2+ in FRTL-5 thyroid cells. With the use of a variety of adrenergic inhibitors, norepinephrine was found to exert its effect via an alpha 1-adrenergic receptor. The exposure of FRTL-5 cells to physiological thyrotropin concentrations enhances the effect on cytosolic Ca2+ level induced by norepinephrine in vitro; the shape of the dose-response curve indicates a cooperative effect of the thyrotropin and norepinephrine. The increase in cytosolic Ca2+ seems to be derived from an intracellular pool rather than from the extracellular space. It is not prevented by nifedipine, a blocker of Ca2+ channels; it is present in cells exposed to ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid; and it is not associated with increased Ca2+ uptake into the cell. the thyrotropin- and norepinephrine-induced increase in cytosolic Ca2+ parallels the efflux of iodide and the organification of thyroglobulin in a dose-dependent manner

    Rapid induction of arachidonic acid release by monocyte chemotactic protein-1 and related chemokines. Role of Ca2+ influx, synergism with platelet-activating factor and significance for chemotaxis.

    Get PDF
    Monocyte Chemotactic Protein-1 (MCP-1), a member of the Cys-Cys branch of the chemokine superfamily, induced a mepacrine- and manoalide-sensitive increase in the release of [3H]arachidonic acid from prelabeled human monocytes and monocytic THP-1 leukemic cells. The effect was rapid (<30 s), reached maximum at optimal chemotactic concentrations, and was completely blocked by pretreatment of monocytes with Bordetella pertussis toxin. A specific antiserum and heat inactivation blocked the induction of arachidonic release by MCP-1. No [3H]arachidonic acid release was observed in the absence of Ca2+ influx (5 mM EGTA or 5 mM Ni2+) or in monocytes loaded with a Ca(2+)-buffering agent. However, using ionophore-permeabilized monocytes and controlled intracellular Ca2+ concentration it was possible to dissociate MCP-1-induced Ca2+ influx from [3H]arachidonic acid release. Thus, the MCP-1-induced increase in [Ca2+]i is necessary but not sufficient for arachidonic acid accumulation. Phospholipase A2 inhibitors (mepacrine, p-bromophenacyl bromide, and manoalide) blocked monocyte polarization and chemotaxis induced by MCP-1. The related Cys-Cys chemokines RANTES and LD78/MIP1 alpha also induced a rapid release of [3H]arachidonic acid, and their chemotactic activity was blocked by phospholipase A2 inhibitors. Brief (5 min) pretreatment of monocytes with platelet-activating factor amplified MCP-1-induced arachidonic acid release and, at MCP-1 suboptimal concentrations, synergized in inducing monocyte migration. Since MCP-1 and platelet-activating factor are induced concomitantly by inflammatory cytokines in monocytes and endothelial cells, we speculate that the observed synergism may have in vivo relevance. The results presented here show that the Cys-Cys chemokines MCP-1, LD78/MIP1 alpha, and RANTES cause rapid release of arachidonic acid in monocytes and that this may be important in inducing monocyte chemotaxis

    Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2

    Get PDF
    Communication between organelles plays key roles in cell biology. In particular, physical and functional coupling of the endoplasmic reticulum (ER) and mitochondria is crucial for regulation of various physiological and pathophysiological processes. Here, we demonstrate that Presenilin 2 (PS2), mutations in which underlie familial Alzheimer’s disease (FAD), promotes ER-mitochondria coupling only in the presence of mitofusin 2 (Mfn2). PS2 is not necessary for the antagonistic effect of Mfn2 on organelle coupling, although its abundance can tune it. The two proteins physically interact, whereas their homologues Mfn1 and PS1 are dispensable for this interplay. Moreover, PS2 mutants associated with FAD are more effective than the wild-type form in modulating ER-mitochondria tethering because their binding to Mfn2 in mitochondrial-associated membranes is favored. We propose a revised model for ER-mitochondria interaction to account for these findings and discuss possible implications for FAD pathogenesis

    Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2

    Get PDF
    Communication between organelles plays key roles in cell biology. In particular, physical and functional coupling of the endoplasmic reticulum (ER) and mitochondria is crucial for regulation of various physiological and pathophysiological processes. Here, we demonstrate that Presenilin 2 (PS2), mutations in which underlie familial Alzheimer's disease (FAD), promotes ER-mitochondria coupling only in the presence of mitofusin 2 (Mfn2). PS2 is not necessary for the antagonistic effect of Mfn2 on organelle coupling, although its abundance can tune it. The two proteins physically interact, whereas their homologues Mfn1 and PS1 are dispensable for this interplay. Moreover, PS2 mutants associated with FAD are more effective than the wild-type form in modulating ER-mitochondria tethering because their binding to Mfn2 in mitochondria-associated membranes is favored. We propose a revised model for ER-mitochondria interaction to account for these findings and discuss possible implications for FAD pathogenesis

    Predictors of invasive breast cancer and lymph node involvement in ductal carcinoma in situ initially diagnosed by vacuum-assisted breast biopsy: Experience of 733 cases

    Get PDF
    Abstract Objective To predict presence of invasive component and nodal involvement in women diagnosed preoperatively with ductal carcinoma in situ (DCIS) by vacuum-assisted breast biopsy (VABB). Materials and methods We retrospectively analyzed 733 patients with preoperatively diagnosed DCIS, investigating the association of clinical–radiological variables with invasive component and nodal involvement. Results Mammographic size >20 mm and residual lesion on post-VABB mammogram were related to invasive component (both p p = 0.001, p = 0.03). Age p = 0.003). By multivariate analysis residual disease was associated with invasive component, and mammographic tumor size >20 mm with nodal involvement, both highly significant. Conclusions Older age, lesio

    Phosphatidic Acid and Lysophosphatidic Acid Induce Haptotactic Migration of Human Monocytes

    Get PDF
    The present study was aimed at defining the chemotactic activity of phosphatidic acid, which is rapidly produced by phagocytes in response to chemotactic agonists. Exogenously added phosphatidic acid induced human monocyte directional migration across polycarbonate filters with an efficacy (number of cell migrated) comparable to that of "classical" chemotactic factors. In lipid specificity studies, activity of phosphatidic acid decreased with increasing acyl chain length but was restored by introducing unsaturation in the acyl chain with the most active form being the natural occurring 18:0,20:4-phosphatidic acid. Lysophosphatidic acid was also active in inducing monocyte migration. No other phospholipid and lysophospholipid tested was effective in this response. Monocyte migration was regulated by a gradient of phosphatidic acid and lysophosphatidic acid bound to the polycarbonate filter, in the absence of detectable soluble chemoattractant. Migration was also observed if phospholipids were bound to fibronectin-coated polycarbonate filters. Thus, phosphatidic acid and lysophosphatidic acid, similarly to other physiological chemoattractants (e.g. C5a and interleukin-8), induce cell migration by an haptotactic mechanism. Phosphatidic acid caused a rapid increase of filamentous actin and, at higher concentrations, induced a rise of intracellular calcium concentration. Monocyte migration to phosphatidic acid and lysophosphatidic acid, but not to diacylglycerol, was inhibited in a concentration-dependent manner by Bordetella pertussis toxin, while cholera toxin was ineffective. In the chemotactic assay, phosphatidic acid and lysophosphatidic acid induced a complete homologous desensitization and only partially cross-desensitized one with each other, or with diacyl-glycerol and monocyte chemotactic protein-1. Suramine inhibited monocyte chemotaxis with a different efficiency phosphatidic acid > lysophosphatidic acid" diacyl-glycerol On the contrary, monocyte chemotactic protein-1-induced chemotaxis was not affected by the drug. Collectively, these data show that phosphatidic acid induces haptotactic migration of monocytes that is at least in part receptor-mediated. These results support a role for phosphatidic acid and lysophosphatidic acid in the regulation of leukocyte accumulation into tissues

    Lupus mastitis in male mimicking a breast lump

    Get PDF
    A 43-year-old male, with a 3-month history of a left breast lump underwent clinical evaluation in our Institute. This solid and irregular mass measured 2 2 cm and was located at the upper lateral quadrant with no skin changes. There were no inflammatory signs. However, a lymphadenopathy was presented with a mobile ipsilateral axillary node 1.5 cm in diameter. Computerized tomography demonstrated a hyperplastic lateral cervical lymph nodes reactio
    • …
    corecore