21 research outputs found

    Numerical and experimental analysis of automotive turbocharger compressor aeroacoustics at different operating conditions

    Full text link
    Centrifugal compressor aeroacoustics are analyzed by means of a three-dimensional CFD model. Three operating points at nominal compressor speed are simulated ranging from best efficiency point to near-surge conditions. Experimental measurements are obtained using a steady flow rig mounted on an anechoic chamber. URANS and DES predictions of compressor global variables and pressure spectra are compared against experimental measurements. Flow-induced noise increases as the operating point moves toward surge line. Stall at the suction side of the blades exists even for high mass flow conditions, causing a high frequency boundary layer oscillation. Low momentum cells rotating at the diffuser are found at points closer to surge, causing the so-called whoosh noise. Inducer rotating stall is also present at these conditions. Point closest to surge shows a rotating tornado-type vortex at the inducer, determining a moving low pressure region that increases low frequency noise content.The equipment used in this work has been partially supported by the Spanish Ministerio de Economia y Competitividad through grant no. TRA2012-36954 and by FEDER project funds "Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT), (FEDER-ICTS-2012-06)" framed in the operational program of unique scientific and technical infrastructure of the Spanish Ministerio de Economia y Competitividad. Part of the computational resources used in this work have been provided by Super computing Center of Universitat Politecnica de Valencia and are thus gratefully acknowledged.Broatch Meza, A.; Galindo, J.; Navarro García, R.; García Tíscar, J. (2016). Numerical and experimental analysis of automotive turbocharger compressor aeroacoustics at different operating conditions. International Journal of Heat and Fluid Flow. 61B:245-255. https://doi.org/10.1016/j.ijheatfluidflow.2016.04.003S24525561

    Compact High-Pressure Intake Silencer with Multilayer Porous Material

    Full text link
    Intake noise has become one the main concerns in the design of highly-supercharged downsized engines, which are expected to play a significant role in the upcoming years. Apart from the low frequencies associated with engine breathing, in these engines other frequency bands are also relevant which are related to the turbocharger operation, and which may radiate from the high-pressure side from the compressor outlet to the charge air cooler. Medium frequencies may be controlled with the use of different typologies of resonators, but these are not so effective for relatively high frequencies. In this paper, the potential of the use of multi-layer porous materials to control those high frequencies is explored. The material sheets are located in the side chamber of an otherwise conventional resonator, thus providing a compact, lightweight and convenient arrangement. Several configurations have been tested in an impulse rig, without and with a superimposed mean flow, and the results have been analyzed with the help of a simple linear finite volume model accounting for the material. Then, the model has been used to explore different combinations of geometry and material properties, with the purpose of defining design guidelines for a proper choice of the device size and the material used, that may allow fulfilling the targeted value.Torregrosa, AJ.; Broatch Jacobi, JA.; Raimbault, V.; Migaud, J. (2016). Compact High-Pressure Intake Silencer with Multilayer Porous Material. SAE International Journal of Passenger Cars. Mechanical Systems. 9(3):1-8. doi:10.4271/2016-01-1819S189

    Experimental methodology for turbocompressor in-duct noise evaluation based on beamforming wave decomposition

    Full text link
    An experimental methodology is proposed to assess the noise emission of centrifugal turbocompressors like those of automotive turbochargers. A step-by-step procedure is detailed, starting from the theoretical considerations of sound measurement in flow ducts and examining specific experimental setup guidelines and signal processing routines. Special care is taken regarding some limiting factors that adversely affect the measuring of sound intensity in ducts, namely calibration, sensor placement and frequency ranges and restrictions. In order to provide illustrative examples of the proposed techniques and results, the methodology has been applied to the acoustic evaluation of a small automotive turbocharger in a flow bench. Samples of raw pressure spectra, decomposed pressure waves, calibration results, accurate surge characterization and final compressor noise maps and estimated spectrograms are provided. The analysis of selected frequency bands successfully shows how different, known noise phenomena of particular interest such as mid-frequency "whoosh noise" and low-frequency surge onset are correlated with operating conditions of the turbocharger. Comparison against external inlet orifice intensity measurements shows good correlation and improvement with respect to alternative wave decomposition techniques.The equipment used in this work has been partially supported by the Spanish Ministerio de Economia y Competitividad through grant no. TRA2012-36954 and by FEDER project funds "Dotacion de infraestructuras cientifico-tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT), (FEDER-ICTS-2012-06)" framed in the operational program of unique scientific and technical infrastructure of the Spanish Ministerio de Economia y Competitividad. J. Garcia-Tiscar is partially supported through contract FPI-S2-2015-1530 of the Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politecnica de Valencia.Torregrosa, AJ.; Broatch Jacobi, JA.; Margot, X.; García Tíscar, J. (2016). Experimental methodology for turbocompressor in-duct noise evaluation based on beamforming wave decomposition. Journal of Sound and Vibration. 376:60-71. https://doi.org/10.1016/j.jsv.2016.04.035S607137

    Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine

    Full text link
    In the last decade, different advanced combustion concepts based on generating totally or partially premixed conditions have been investigated in CI (compression ignition) engines with the aim of achieving lower NOx (nitrous oxides) and soot emissions. Most of the drawbacks inherent to this type of combustions, such as the combustion phasing control or combustion stability, can be mitigated by combining the PPC (Partially Premixed Combustion) concept fueled by gasoline and a small 2-stroke HSDI (high speed direct ignition) engine. However, combustion noise issue remains unsolved while it is a critical aspect due to its strong influence in the customer purchasing decision and compliance of more stringent regulations. In this work, an analysis of the combustion noise generated by PPC combustion concept is performed in order to identify the most influential parameters and to define key paths for controlling the noise level. In addition, 3D CFD (Computational Fluid Dynamics) simulations have been performed to further understand the combustion noise generation mechanisms. Results evidence how the strong impact of the maximum pressure time-derivative achieved during combustion process renders all other sources of noise generation irrelevant. The trade-off between combustion noise and combustion efficiency of this PPC concept has been confirmed, while the intrinsic relation between such parameters and the engine efficiency has been also evaluated.The authors kindly recognize the technical support provided by Mr. Pascal Tribotte from RENAULT SAS in the frame of the DREAM-DELTA-68530-13-3205 Project.Broatch Jacobi, JA.; Margot, X.; Novella Rosa, R.; Gómez-Soriano, J. (2016). Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine. Energy. 107:612-624. https://doi.org/10.1016/j.energy.2016.04.045S61262410

    Acoustic characterization of automotive turbocompressors

    Full text link
    The performance of different experimental techniques proposed in the literature for acoustic characterization was assessed through the study of the noise generated by the compressor of an automotive turbocharger under different working conditions in an engine test cell. The most critical restrictions of in-duct intensimetry methods regarding frequency limitations are presented and experimentally demonstrated. The results provided by those methods were correlated against a reference intensity probe. A beamforming method based on three-sensor-phased arrays appears to be the most reliable approach in the plane wave range, presenting higher accuracy than the more common two-microphone method and simple pressure level measurements. Also, preliminary results from a novel radiated noise quantification technique based on acoustic particle velocity are presented and discussed. The results indicate that further research on this topic is required.This work has been partially supported by the Spanish Ministerio de Economia y Competitividad through grant no. TRA2012-36954. The equipment used in this work has been partially supported by FEDER project funds "Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT), (FEDER-ICTS-2012-06),'' framed in the operational program of unique scientific and technical infrastructure of the Spanish Ministerio de Economia y Competitividad.Torregrosa, AJ.; Broatch Jacobi, JA.; Navarro García, R.; García Tíscar, J. (2015). Acoustic characterization of automotive turbocompressors. International Journal of Engine Research. 16(1):31-37. https://doi.org/10.1177/1468087414562866S313716

    Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines

    Full text link
    Diesel engines are the most commonly used internal combustion engines nowadays, especially in European transportation. This preference is due to their low consumption and acceptable driveability and comfort. However, the main disadvantages of traditional direct injection Diesel engines are their high levels of noise, nitrogen oxides (NO x) and soot emissions, and the usage of fossil fuels. In order to tackle the problem of high emission levels, new combustion concepts have been recently developed. A good example is the premixed charge compression ignition (PCCI) combustion, a strategy in which early injections are used, causing a burning process in which more fuel is burned in premixed conditions, which affects combustion noise. The use of a pilot injection has become an effective tool for reducing combustion noise. The main objective of this paper is to analyze experimentally the pollutant emissions, combustion noise, and performance of a Diesel engine operating under PCCI combustion with the use of a pilot injection. In addition, a novel methodology, based on the decomposition of the in-cylinder pressure signal, was used for combustion noise analysis. The results show that while the PCCI combustion has potential to reduce significantly the NO x and soot emission levels, compared to conventional Diesel combustion strategy, combustion noise continues to be a critical issue for the implementation of this new combustion concept in passenger cars.This work has been partially supported by Ministerio de Educacin y Ciencia through Grant No. TRA2006-13782. L.F. Monico holds the Grant 2009/003 from Santiago Grisolia Program of Generalitat Valenciana.Torregrosa, AJ.; Broatch Jacobi, JA.; García Martínez, A.; Mónico Muñoz, LF. (2013). Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines. Applied Energy. 104:149-157. https://doi.org/10.1016/j.apenergy.2012.11.040S14915710

    Determination of the resonance response in an engine cylinder with a bowl-in-piston geometry by the finite element method for inferring the trapped mass

    Full text link
    [EN] Cylinder resonance phenomenon in reciprocating engines consists of high-frequency pressure oscillations excited by the combustion. The frequency of these oscillations is proportional to the speed of sound on pent-roof combustion chambers and henceforth the resonance frequency can be used to estimate the trapped mass, but in bowl-in-piston chambers a geometrical factor must be added in order to deal with the bowl disturbance. This paper applies the finite element method (FEM) to provide a resonance calibration for new design combustion chambers, which are commonly dominated by the bowl geometry near the top dead centre. The resonance calibration does not need any sensor information when it is solved by a FEM procedure, and consequently, is free from measurement errors. The calibration is proven to be independent of the chamber conditions and the results obtained are compared with experimental data by using spectral techniques and measuring precisely the trapped mass.[EN]This research has been partially supported by the European Union in framework of the POWERFUL project, seventh framework program FP7/2007-2013, theme 7, sustainable surface transport (grant agreement number SCP8-GA-2009-234032).Broatch Jacobi, JA.; Guardiola, C.; Bares-Moreno, P.; Denia Guzmán, FD. (2016). Determination of the resonance response in an engine cylinder with a bowl-in-piston geometry by the finite element method for inferring the trapped mass. International Journal of Engine Research. 17(5):534-542. https://doi.org/10.1177/1468087415589701S534542175Powell, J. D. (1993). Engine Control Using Cylinder Pressure: Past, Present, and Future. Journal of Dynamic Systems, Measurement, and Control, 115(2B), 343-350. doi:10.1115/1.2899074Desantes, J. M., Galindo, J., Guardiola, C., & Dolz, V. (2010). Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement. Experimental Thermal and Fluid Science, 34(1), 37-47. doi:10.1016/j.expthermflusci.2009.08.009Finol, C. A., & Robinson, K. (2006). Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(12), 1765-1781. doi:10.1243/09544070jauto202Torregrosa, A. J., Broatch, A., Martín, J., & Monelletta, L. (2007). Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components. Measurement Science and Technology, 18(7), 2131-2142. doi:10.1088/0957-0233/18/7/045Luján, J. M., Bermúdez, V., Guardiola, C., & Abbad, A. (2010). A methodology for combustion detection in diesel engines through in-cylinder pressure derivative signal. Mechanical Systems and Signal Processing, 24(7), 2261-2275. doi:10.1016/j.ymssp.2009.12.012Payri, F., Broatch, A., Tormos, B., & Marant, V. (2005). New methodology for in-cylinder pressure analysis in direct injection diesel engines—application to combustion noise. Measurement Science and Technology, 16(2), 540-547. doi:10.1088/0957-0233/16/2/029Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., & Song, M. (2012). The engine knock analysis – An overview. Applied Energy, 92, 628-636. doi:10.1016/j.apenergy.2011.11.079Draper C. S. The physical effects of detonation in a closed cylindrical chamber. Technical report, National Advisory Committee for Aeronautics, 1938.Payri, F., Olmeda, P., Guardiola, C., & Martín, J. (2011). Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 31(14-15), 2869-2876. doi:10.1016/j.applthermaleng.2011.05.012Hickling, R., Feldmaier, D. A., Chen, F. H. K., & Morel, J. S. (1983). Cavity resonances in engine combustion chambers and some applications. The Journal of the Acoustical Society of America, 73(4), 1170-1178. doi:10.1121/1.389261Bodisco, T., Reeves, R., Situ, R., & Brown, R. (2012). Bayesian models for the determination of resonant frequencies in a DI diesel engine. Mechanical Systems and Signal Processing, 26, 305-314. doi:10.1016/j.ymssp.2011.06.014Guardiola, C., Pla, B., Blanco-Rodriguez, D., & Bares, P. (2014). Cycle by Cycle Trapped Mass Estimation for Diagnosis and Control. SAE International Journal of Engines, 7(3), 1523-1531. doi:10.4271/2014-01-1702Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264Broatch, A., Margot, X., Gil, A., & Christian Donayre, (José). (2007). Computational study of the sensitivity to ignition characteristics of the resonance in DI diesel engine combustion chambers. Engineering Computations, 24(1), 77-96. doi:10.1108/02644400710718583Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006Mechel, F. P. (Ed.). (2008). Formulas of Acoustics. doi:10.1007/978-3-540-76833-3Samimy, B., & Rizzoni, G. (1996). Mechanical signature analysis using time-frequency signal processing: application to internal combustion engine knock detection. Proceedings of the IEEE, 84(9), 1330-1343. doi:10.1109/5.535251Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1FUENMAYOR, F. J., DENIA, F. D., ALBELDA, J., & GINER, E. (2002). H -ADAPTIVE REFINEMENT STRATEGY FOR ACOUSTIC PROBLEMS WITH A SET OF NATURAL FREQUENCIES. Journal of Sound and Vibration, 255(3), 457-479. doi:10.1006/jsvi.2001.4165Benajes, J., Molina, S., García, A., Belarte, E., & Vanvolsem, M. (2014). An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Applied Thermal Engineering, 63(1), 66-76. doi:10.1016/j.applthermaleng.2013.10.052Chen, A., & Dai, X. (2010). Internal combustion engine vibration analysis with short-term Fourier-transform. 2010 3rd International Congress on Image and Signal Processing. doi:10.1109/cisp.2010.5646222Stanković, Lj., & Böhme, J. F. (1999). Time–frequency analysis of multiple resonances in combustion engine signals. Signal Processing, 79(1), 15-28. doi:10.1016/s0165-1684(99)00077-8Costa, A. H., & Boudreaux-Bartels, G. F. (1999). An overview of aliasing errors in discrete-time formulations of time-frequency representations. IEEE Transactions on Signal Processing, 47(5), 1463-1474. doi:10.1109/78.75724

    A non-linear quasi-3D model with Flux-Corrected-Transport for engine gas-exchange modelling

    Full text link
    Modelling has proven to be an important tool in the design of manifolds and silencers for internal combustion engines. Although simple 1D models are generally sufficiently precise in the case of manifold models, they would usually fail to predict the high frequency behaviour of modern compact manifold designs and, of course, of a complex-shaped silencing system. Complete 3D models are able to account for transversal modes and other non-1D phenomena, but at a high computational cost. A suitable alternative is provided by time-domain non-linear quasi-3D models, whose computational cost is relatively low but still providing an accurate description of the high frequency behaviour of certain elements. In this paper, a quasi-3D model which makes use of a non-linear second order time and space discretization based on finite volumes is presented. As an alternative for avoiding overshoots at discontinuities, a Flux-Corrected Transport technique has been adapted to the quasi-3D method in order to achieve convergence and avoid numerical dispersion. It is shown that the combination of dissipation via damping together with the phoenical form of the anti-diffusion term provides satisfactory resultsTorregrosa, AJ.; Broatch Jacobi, JA.; Arnau Martínez, FJ.; Hernández-Marco, M. (2016). A non-linear quasi-3D model with Flux-Corrected-Transport for engine gas-exchange modelling. Journal of Computational and Applied Mathematics. 291:103-111. doi:10.1016/j.cam.2015.03.034S10311129

    Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach

    Full text link
    [EN] In this article, a numerical methodology for assessing combustion noise in compression ignition engines is described with the specific purpose of analysing the unsteady pressure field inside the combustion chamber. The numerical results show consistent agreement with experimental measurements in both the time and frequency domains. Nonetheless, an exhaustive analysis of the calculation convergence is needed to guarantee an independent solution. These results contribute to the understanding of in-cylinder unsteady processes, especially of those related to combustion chamber resonances, and their effects on the radiated noise levels. The method was applied to different combustion system configurations by modifying the spray angle of the injector, evidencing that controlling the ignition location through this design parameter, it is possible to decrease the combustion noise by minimizing the resonance contribution. Important efficiency losses were, however, observed due to the injector/bowl matching worsening which compromises the performance and emissions levels.The authors want to express their gratitude to CONVERGENT SCIENCE Inc. and Convergent Science GmbH for their kind support for performing the CFD calculations using CONVERGE software.Torregrosa, AJ.; Broatch, A.; Margot, X.; Gómez-Soriano, J. (2018). Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach. International Journal of Engine Research. 1-13. https://doi.org/10.1177/1468087418803030S113Benajes, J., Novella, R., De Lima, D., & Tribotté, P. (2014). Analysis of combustion concepts in a newly designed two-stroke high-speed direct injection compression ignition engine. International Journal of Engine Research, 16(1), 52-67. doi:10.1177/1468087414562867Costa, M., Bianchi, G. M., Forte, C., & Cazzoli, G. (2014). A Numerical Methodology for the Multi-objective Optimization of the DI Diesel Engine Combustion. Energy Procedia, 45, 711-720. doi:10.1016/j.egypro.2014.01.076Navid, A., Khalilarya, S., & Taghavifar, H. (2016). Comparing multi-objective non-evolutionary NLPQL and evolutionary genetic algorithm optimization of a DI diesel engine: DoE estimation and creating surrogate model. Energy Conversion and Management, 126, 385-399. doi:10.1016/j.enconman.2016.08.014Benajes, J., García, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014Masterton, B., Heffner, H., & Ravizza, R. (1969). The Evolution of Human Hearing. The Journal of the Acoustical Society of America, 45(4), 966-985. doi:10.1121/1.1911574Strahle, W. C. (1978). Combustion noise. Progress in Energy and Combustion Science, 4(3), 157-176. doi:10.1016/0360-1285(78)90002-3Flemming, F., Sadiki, A., & Janicka, J. (2007). Investigation of combustion noise using a LES/CAA hybrid approach. Proceedings of the Combustion Institute, 31(2), 3189-3196. doi:10.1016/j.proci.2006.07.060Klos, D., & Kokjohn, S. L. (2014). Investigation of the sources of combustion instability in low-temperature combustion engines using response surface models. International Journal of Engine Research, 16(3), 419-440. doi:10.1177/1468087414556135Cyclic dispersion in engine combustion—Introduction by the special issue editors. (2015). International Journal of Engine Research, 16(3), 255-259. doi:10.1177/1468087415572740Hickling, R., Feldmaier, D. A., & Sung, S. H. (1979). Knock‐induced cavity resonances in open chamber diesel engines. The Journal of the Acoustical Society of America, 65(6), 1474-1479. doi:10.1121/1.382910Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264Broatch, A., Margot, X., Gil, A., & Christian Donayre, (José). (2007). Computational study of the sensitivity to ignition characteristics of the resonance in DI diesel engine combustion chambers. Engineering Computations, 24(1), 77-96. doi:10.1108/02644400710718583Eriksson, L. J. (1980). Higher order mode effects in circular ducts and expansion chambers. The Journal of the Acoustical Society of America, 68(2), 545-550. doi:10.1121/1.384768Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081Tutak, W., & Jamrozik, A. (2016). Validation and optimization of the thermal cycle for a diesel engine by computational fluid dynamics modeling. Applied Mathematical Modelling, 40(13-14), 6293-6309. doi:10.1016/j.apm.2016.02.021Payri, F., Benajes, J., Margot, X., & Gil, A. (2004). CFD modeling of the in-cylinder flow in direct-injection Diesel engines. Computers & Fluids, 33(8), 995-1021. doi:10.1016/j.compfluid.2003.09.003Benajes, J., Novella, R., De Lima, D., & Thein, K. (2017). Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine. Applied Energy, 193, 515-530. doi:10.1016/j.apenergy.2017.02.044Lesieur, M., Métais, O., & Comte, P. (2005). Large-Eddy Simulations of Turbulence. doi:10.1017/cbo9780511755507Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035Silva, C. F., Leyko, M., Nicoud, F., & Moreau, S. (2013). Assessment of combustion noise in a premixed swirled combustor via Large-Eddy Simulation. Computers & Fluids, 78, 1-9. doi:10.1016/j.compfluid.2010.09.034Jamrozik, A., Tutak, W., Kociszewski, A., & Sosnowski, M. (2013). Numerical simulation of two-stage combustion in SI engine with prechamber. Applied Mathematical Modelling, 37(5), 2961-2982. doi:10.1016/j.apm.2012.07.040Qin, W., Xie, M., Jia, M., Wang, T., & Liu, D. (2014). Large eddy simulation of in-cylinder turbulent flows in a DISI gasoline engine. Applied Mathematical Modelling, 38(24), 5967-5985. doi:10.1016/j.apm.2014.05.004Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2016). Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine. Energy, 107, 612-624. doi:10.1016/j.energy.2016.04.045Torregrosa, A. J., Broatch, A., Martín, J., & Monelletta, L. (2007). Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components. Measurement Science and Technology, 18(7), 2131-2142. doi:10.1088/0957-0233/18/7/045Payri, F., Broatch, A., Margot, X., & Monelletta, L. (2008). Sound quality assessment of Diesel combustion noise using in-cylinder pressure components. Measurement Science and Technology, 20(1), 015107. doi:10.1088/0957-0233/20/1/015107Ihlenburg, F. (2003). The Medium-Frequency Range in Computational Acoustics: Practical and Numerical Aspects. Journal of Computational Acoustics, 11(02), 175-193. doi:10.1142/s0218396x03001900Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005Payri, F., Broatch, A., Tormos, B., & Marant, V. (2005). New methodology for in-cylinder pressure analysis in direct injection diesel engines—application to combustion noise. Measurement Science and Technology, 16(2), 540-547. doi:10.1088/0957-0233/16/2/029Shahlari, A. J., Hocking, C., Kurtz, E., & Ghandhi, J. (2013). Comparison of Compression Ignition Engine Noise Metrics in Low-Temperature Combustion Regimes. SAE International Journal of Engines, 6(1), 541-552. doi:10.4271/2013-01-1659Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229-253. doi:10.1016/0021-9991(80)90087-xReitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40Babajimopoulos, A., Assanis, D. N., Flowers, D. L., Aceves, S. M., & Hessel, R. P. (2005). A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines. International Journal of Engine Research, 6(5), 497-512. doi:10.1243/146808705x30503Pal, P., Keum, S., & Im, H. G. (2015). Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines. International Journal of Engine Research, 17(3), 280-290. doi:10.1177/1468087415571006Torregrosa, A. J., Broatch, A., Gil, A., & Gomez-Soriano, J. (2018). Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Applied Acoustics, 135, 91-100. doi:10.1016/j.apacoust.2018.02.006Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021Broatch, A., Javier Lopez, J., García-Tíscar, J., & Gomez-Soriano, J. (2018). Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling. Journal of Engineering for Gas Turbines and Power, 140(10). doi:10.1115/1.4040287Molina, S., García, A., Pastor, J. M., Belarte, E., & Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 143, 211-227. doi:10.1016/j.apenergy.2015.01.03

    Application of a zero-dimensional model to assess the effect of swirl on indicated efficiency

    Full text link
    This is the author s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087418779726[EN] Increasing internal combustion engine efficiency continues being one of the main goals of engine research. To achieve this objective, different engine strategies are being developed continuously. However, the assessment of these techniques is not straightforward due to their influence on various intermediate phenomena inherent to the combustion process, which finally result in indicated efficiency trade-offs. During this work, a new methodology to assess these intermediate imperfections on gross indicated efficiency using a zero-dimensional model is developed. This methodology is applied to a swirl parametric study, where it has been concluded that the heat transfer and the rate of heat release are the single relevant changing phenomena. Results show that heat transfer always increases with swirl affecting negatively gross indicated efficiency (around -0.5%), while the impact of combustion velocity is not monotonous. It is enhanced up to a certain swirl ratio (it changes with engine speed) at low engine speed (resulting in an increment of +1.7% in gross indicated efficiency), but it is slowed down at high engine speed with the consequent worsening of gross indicated efficiency (-0.8%).The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partially funded by GM Global R&D and the Government of Spain through Project TRA2013-41348-R. D. B.-C. was partially supported through contract FPI-S2-2016-1356 of the Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politecnica de Valencia.Broatch, A.; Martín, J.; García Martínez, A.; Blanco-Cavero, D.; Warey, A.; Domenech, V. (2019). Application of a zero-dimensional model to assess the effect of swirl on indicated efficiency. International Journal of Engine Research. 20(8-9):837-848. https://doi.org/10.1177/1468087418779726S837848208-9Mohan, B., Yang, W., & Chou, S. kiang. (2013). Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renewable and Sustainable Energy Reviews, 28, 664-676. doi:10.1016/j.rser.2013.08.051Agarwal, A. K., Srivastava, D. K., Dhar, A., Maurya, R. K., Shukla, P. C., & Singh, A. P. (2013). Effect of fuel injection timing and pressure on combustion, emissions and performance characteristics of a single cylinder diesel engine. Fuel, 111, 374-383. doi:10.1016/j.fuel.2013.03.016Hiwase, S. D., Moorthy, S., Prasad, H., Dumpa, M., & Metkar, R. M. (2013). Multidimensional Modeling of Direct Injection Diesel Engine with Split Multiple Stage Fuel Injections. Procedia Engineering, 51, 670-675. doi:10.1016/j.proeng.2013.01.095Canakci, M. (2012). Combustion characteristics of a DI-HCCI gasoline engine running at different boost pressures. Fuel, 96, 546-555. doi:10.1016/j.fuel.2012.01.042Pan, M., Shu, G., Wei, H., Zhu, T., Liang, Y., & Liu, C. (2014). Effects of EGR, compression ratio and boost pressure on cyclic variation of PFI gasoline engine at WOT operation. Applied Thermal Engineering, 64(1-2), 491-498. doi:10.1016/j.applthermaleng.2013.11.013Fontana, G., & Galloni, E. (2010). Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation. Applied Energy, 87(7), 2187-2193. doi:10.1016/j.apenergy.2009.11.022Verhelst, S., Demuynck, J., Sierens, R., & Huyskens, P. (2010). Impact of variable valve timing on power, emissions and backfire of a bi-fuel hydrogen/gasoline engine. International Journal of Hydrogen Energy, 35(9), 4399-4408. doi:10.1016/j.ijhydene.2010.02.022Fontana, G., & Galloni, E. (2009). Variable valve timing for fuel economy improvement in a small spark-ignition engine. Applied Energy, 86(1), 96-105. doi:10.1016/j.apenergy.2008.04.009Perini, F., Miles, P. C., & Reitz, R. D. (2014). A comprehensive modeling study of in-cylinder fluid flows in a high-swirl, light-duty optical diesel engine. Computers & Fluids, 105, 113-124. doi:10.1016/j.compfluid.2014.09.011Wei, S., Wang, F., Leng, X., Liu, X., & Ji, K. (2013). Numerical analysis on the effect of swirl ratios on swirl chamber combustion system of DI diesel engines. Energy Conversion and Management, 75, 184-190. doi:10.1016/j.enconman.2013.05.044Olmeda, P., Martín, J., Blanco-Cavero, D., Warey, A., & Domenech, V. (2017). Effect of in-cylinder swirl on engine efficiency and heat rejection in a light-duty diesel engine. International Journal of Engine Research, 18(1-2), 81-92. doi:10.1177/1468087417693078Sandalcı, T., & Karagöz, Y. (2014). Experimental investigation of the combustion characteristics, emissions and performance of hydrogen port fuel injection in a diesel engine. International Journal of Hydrogen Energy, 39(32), 18480-18489. doi:10.1016/j.ijhydene.2014.09.044Sorate, K. A., & Bhale, P. V. (2015). Biodiesel properties and automotive system compatibility issues. Renewable and Sustainable Energy Reviews, 41, 777-798. doi:10.1016/j.rser.2014.08.079Ryan, T. W., & Callahan, T. J. (1996). Homogeneous Charge Compression Ignition of Diesel Fuel. SAE Technical Paper Series. doi:10.4271/961160Kiplimo, R., Tomita, E., Kawahara, N., & Yokobe, S. (2012). Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine. Applied Thermal Engineering, 37, 165-175. doi:10.1016/j.applthermaleng.2011.11.011Ramesh, A. K., Shaver, G. M., Allen, C. M., Nayyar, S., Gosala, D. B., Caicedo Parra, D., … Nielsen, D. (2017). Utilizing low airflow strategies, including cylinder deactivation, to improve fuel efficiency and aftertreatment thermal management. International Journal of Engine Research, 18(10), 1005-1016. doi:10.1177/1468087417695897Shelby, M. H., Leone, T. G., Byrd, K. D., & Wong, F. K. (2017). Fuel Economy Potential of Variable Compression Ratio for Light Duty Vehicles. SAE International Journal of Engines, 10(3), 817-831. doi:10.4271/2017-01-0639Yamasaki, Y., Ikemura, R., & Kaneko, S. (2017). Model-based control of diesel engines with multiple fuel injections. International Journal of Engine Research, 19(2), 257-265. doi:10.1177/1468087417747738Weberbauer, F., Rauscher, M., Kulzer, A., Knopf, M., & Bargende, M. (2005). Generally applicate split of losses for new combustion concepts. MTZ worldwide, 66(2), 17-19. doi:10.1007/bf03227736Payri, F., Olmeda, P., Guardiola, C., & Martín, J. (2011). Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 31(14-15), 2869-2876. doi:10.1016/j.applthermaleng.2011.05.012Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.54863
    corecore