34 research outputs found

    Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) with Oxaliplatin, Cisplatin, and Doxorubicin in Patients with Peritoneal Carcinomatosis: An Open-Label, Single-Arm, Phase II Clinical Trial

    Get PDF
    Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is an innovative approach for treating peritoneal carcinomatosis that applies chemotherapeutic drugs into the peritoneal cavity as an under-pressure airflow. It improves local bioavailability of cytostatic drugs as compared to conventional intraperitoneal chemotherapy. The aim of this study is to prove feasibility, efficacy and safety of this new treatment. Patients included in the analysis underwent at least two single port PIPAC procedures; drugs used were Oxaliplatin for colorectal cancers and Cisplatin + Doxorubicin for ovarian, gastric, and primary peritoneal cancers. The primary endpoint was the Disease Control Rate according to the RECIST (Response Evaluation Criteria in Solid Tumors) criteria. Secondary significant endpoints were overall and progression free survival, tumor regression on histology, and quality of life. Safety and tolerability were assessed according to the Common Terminology Criteria for Adverse Events 4. Sixty-three patients were enrolled in this trial. Forty patients (100 PIPAC) were eligible for analysis. Twenty patients were undergoing systemic chemotherapy. Fourteen patients reported an objective response (35%). Median overall survival was 18.1 months; median progression-free survival was 7.4 months. Minor morbidity was observed in seven procedures. Grade 3 complications occurred in two patients, and grade 4 in one patient submitted to reoperation. Single-port PIPAC is feasible, safe, and easy to perform. The combined treatment based on systemic chemotherapy and PIPAC does not induce significant hepatic and renal toxicity and can be considered a valid therapeutic option in patients with advanced peritoneal disease. Further studies on the use of PIPAC alone, possibly with different drug dosages, may define the real effectiveness of the procedure

    Parp1 inhibitor and trabectedin combination does not increase tumor mutational burden in advanced sarcomas—a preclinical and translational study

    Get PDF
    SIMPLE SUMMARY: Immunotherapy has revolutionized cancer treatment, but not for all tumor types. Indeed, sarcomas are considered “immune-cold” tumors, which are relatively unresponsive to immunotherapy. One strategy to potentiate immunotherapy efficacy is to increase tumor immunogenicity, for instance by boosting the number of candidate targets (neoantigens) to be recognized by the immune system. Tumor mutational burden indicates the number of somatic mutations identified in the tumor and normalized per megabase. Tumor mutational burden is considered as an acceptable, measurable surrogate of tumor neoantigens. Here, we explored whether the combination of two DNA-damaging agents, trabectedin and olaparib, could increase tumor mutational burden in sarcomas, to prime subsequent immunotherapy. We found no variation in tumor mutational burden after trabectedin + olaparib in preclinical and clinical samples. Therefore, other aspects should be considered to increase sarcoma immunogenicity, by exploiting different pathways such as the potential modulation of the tumor microenvironment induced by trabectedin + olaparib. ABSTRACT: Drug-induced tumor mutational burden (TMB) may contribute to unleashing the immune response in relatively “immune-cold” tumors, such as sarcomas. We previously showed that PARP1 inhibition perpetuates the DNA damage induced by the chemotherapeutic agent trabectedin in both preclinical models and sarcoma patients. In the present work, we explored acquired genetic changes in DNA repair genes, mutational signatures, and TMB in a translational platform composed of cell lines, xenografts, and tumor samples from patients treated with trabectedin and olaparib combination, compared to cells treated with temozolomide, an alkylating agent that induces hypermutation. Whole-exome and targeted panel sequencing data analyses revealed that three cycles of trabectedin and olaparib combination neither affected the mutational profiles, DNA repair gene status, or copy number alterations, nor increased TMB both in homologous recombinant-defective and proficient cells or in xenografts. Moreover, TMB was not increased in tumor specimens derived from trabectedin- and olaparib-treated patients (5–6 cycles) when compared to pre-treatment biopsies. Conversely, repeated treatments with temozolomide induced a massive TMB increase in the SJSA-1 osteosarcoma model. In conclusion, a trabectedin and olaparib combination did not show mutagenic effects and is unlikely to prime subsequent immune-therapeutic interventions based on TMB increase. On the other hand, these findings are reassuring in the increasing warning of treatment-induced hematologic malignancies correlated to PARP1 inhibitor use

    Cytokine Induced Killer cells are effective against sarcoma cancer stem cells spared by chemotherapy and target therapy

    Get PDF
    Metastatic bone and soft tissue sarcomas often relapse after chemotherapy (CHT) and molecular targeted therapy (mTT), maintaining a severe prognosis. A subset of sarcoma cancer stem cells (sCSC) is hypothesized to resist conventional drugs and sustain disease relapses. We investigated the immunotherapy activity of cytokine induced killer cells (CIK) against autologous sCSC that survived CHT and mTT. The experimental platform included two aggressive bone and soft tissue sarcoma models: osteosarcoma (OS) and undifferentiated-pleomorphic sarcoma (UPS). To visualize putative sCSC we engineered patient-derived sarcoma cultures (2 OS and 3 UPS) with a lentiviral sCSC-detector wherein the promoter of stem-gene Oct4 controls the expression of eGFP. We visualized a fraction of sCSC (mean 24.2 +/- 5.2%) and confirmed their tumorigenicity in vivo. sCSC resulted relatively resistant to both CHT and mTT in vitro. Therapeutic doses of doxorubicin significantly enriched viable eGFP(+)sCSC in both OS (2.6 fold, n = 16) and UPS (2.3 fold, n = 29) compared to untreated controls. Treatment with sorafenib (for OS) and pazopanib (for UPS) also determined enrichment (1.3 fold) of viable eGFP(+)sCSC, even if less intense than what observed after CHT. Sarcoma cells surviving CHT and mTT were efficiently killed in vitro by autologous CIK even at minimal effector/target ratios (40:1 = 82%, 1:4 = 29%, n = 13). CIK immunotherapy did not spare sCSC that were killed as efficiently as whole sarcoma cell population. The relative chemo-resistance of sCSC and sensitivity to CIK immunotherapy was confirmed in vivo. Our findings support CIK as an innovative, clinically explorable, approach to eradicate chemo-resistant sCSC implicated in tumor relapse

    Integrated Antitumor Activities of Cellular Immunotherapy with CIK Lymphocytes and Interferons against KIT/PDGFRA Wild Type GIST

    Get PDF
    : Gastrointestinal stromal tumors (GISTs) are rare, mesenchymal tumors of the gastrointestinal tract, characterized by either KIT or PDGFRA mutation in about 85% of cases. KIT/PDGFRA wild type gastrointestinal stromal tumors (wtGIST) account for the remaining 15% of GIST and represent an unmet medical need: their prevalence and potential medical vulnerabilities are not completely defined, and effective therapeutic strategies are still lacking. In this study we set a patient-derived preclinical model of wtGIST to investigate their phenotypic features, along with their susceptibility to cellular immunotherapy with cytokine-induced killer lymphocytes (CIK) and interferons (IFN). We generated 11 wtGIST primary cell lines (wtGISTc). The main CIK ligands (MIC A/B; ULBPs), along with PD-L1/2, were expressed by wtGISTc and the expression of HLA-I molecules was preserved. Patient-derived CIK were capable of intense killing in vitro against wtGISTc resistant to both imatinib and sunitinib. We found that CIK produce a high level of granzyme B, IFNα and IFNγ. CIK-conditioned supernatant was responsible for part of the observed tumoricidal effect, along with positive bystander modulatory activities enhancing the expression of PD-L1/2 and HLA-I molecules. IFNα, but not In, had direct antitumor effects on 50% (4/8) of TKI-resistant wtGISTc, positively correlated with the tumor expression of IFN receptors. wtGIST cells that survived IFNα were still sensitive to CIK immunotherapy. Our data support the exploration of CIK immunotherapy in clinical studies for TKI-resistant wtGIST, proposing reevaluation for IFNα within this challenging setting

    La Microchirurgia Endodontica

    No full text
    corecore