165 research outputs found

    A study of deposition conditions and hydrogen motion in rf sputtered hydrogenated amorphous silicon

    Get PDF
    Three series of a-Si:H films were prepared by r.f. sputtering in He/H(,2), Ar/H(,2), and Xe/H(,2) atmospheres. The r.f. power used for deposition was varied from 0.27 W/cm(\u272) to 3.3 W/cm(\u272) for each of these three series. The films were characterized using mechanical thickness, optical transmission, infrared, and electron spin resonance measurements;The deposition rates of these films were found to vary linearly with deposition rates predicted from known sputtering yields. The total hydrogen concentration of the films as a function of deposition rate was found to agree with the predictions of a kinematic model for hydrogen incorporation. The concentration of silicon atoms bonded to more than one hydrogen atom was found to agree with a random statistical model, although, there were fluctuations away from this model\u27s predictions when high r.f. powers were used for deposition;The density of weak Si-Si bonds and the value of the Urbach edge coefficient were used to judge the quality of the films. It was found that samples prepared in an Ar/H(,2) atmosphere at high r.f. powers (\u3e2.2 W/cm(\u272)) were of the highest quality;Samples consisting of alternating layers of high and low hydrogen concentration were also prepared. These samples were confirmed to be multilayers through the use of x-ray, optical transmission, and reflected electron loss spectroscopy depth profiling measurements. Thermal annealing experiments performed on these samples demonstrated that hydrogen does not diffuse, but rather effuses out of the sample, at elevated temperatures. These experiments also;indicated that silicon-hydrogen bonds in r.f. sputtered a-Si:H are stronger than silicon-hydrogen bonds in glow discharge produced a-Si:H; *DOE Report IS-T-1309. This work was performed under contract No. W-7405-Eng-82 with the U.S. Department of Energy

    Strain-Induced Conduction Band Spin Splitting in GaAs from First Principles Calculations

    Full text link
    We use a recently developed self-consistent GW approximation to present first principles calculations of the conduction band spin splitting in GaAs under [110] strain. The spin orbit interaction is taken into account as a perturbation to the scalar relativistic hamiltonian. These are the first calculations of conduction band spin splitting under deformation based on a quasiparticle approach; and because the self-consistent GW scheme accurately reproduces the relevant band parameters, it is expected to be a reliable predictor of spin splittings. We also discuss the spin relaxation time under [110] strain and show that it exhibits an in-plane anisotropy, which can be exploited to obtain the magnitude and sign of the conduction band spin splitting experimentally.Comment: 8 pages, 4 figures, 1 tabl

    Reversal of spin polarization in Fe/GaAs (001) driven by resonant surface states: First-principles calculations

    Get PDF
    A minority-spin resonant state at the Fe/GaAs(001) interface is predicted to reverse the spin polarization with voltage bias of electrons transmitted across this interface. Using a Green's function approach within the local spin density approximation we calculate spin-dependent current in a Fe/GaAs/Cu tunnel junction as a function of applied bias voltage. We find a change in sign of the spin polarization of tunneling electrons with bias voltage due to the interface minority-spin resonance. This result explains recent experimental data on spin injection in Fe/GaAs contacts and on tunneling magnetoresistance in Fe/GaAs/Fe magnetic tunnel junctions

    Prognosis in long-term immunosuppressive treatment of refractory chronic inflammatory demyelinating polyradiculoneuropathy

    Full text link
    Treatment of chronic inflammatory demyelinating polyneuropathy (CIDP) frequently includes use of immunosuppressive agents. Controlled treatment trials demonstrating efficacy are available only for prednisone and therapeutic plasma exchange (TPE). When these fail to achieve lasting clinical improvement after reduction or cessation of therapy, subsequent regimens are empiric, often leading to prolonged immunosuppression. It is not possible to predict who will respond to which agent and when. Administered individually, immunosuppressive agents may pose an acceptable risk, but cumulative effects of multiple agents in refractory patients may suppress the immune system and contribute to increased morbidity and mortality. Treatment difficulties with refractory CIDP patients have not been emphasized, and long-term effects of immunosuppression have focused on the risk of malignancy. In reviewing our clinical experience treating over 100 CIDP patients we identified approximately 20 patients who could be considered refractory to multiple immunosuppressive therapies and dependent upon long-term intermittent TPE. Two of these patients exemplify the morbidity associated with CIDP and its associated treatment. Our review of the clinical course of these patients raised issues about the use of multiple immunosuppressive agents, long-term goals, and long-term prognosis in CIDP.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30273/1/0000674.pd

    Measurement Analysis and Quantum Gravity

    Full text link
    We consider the question of whether consistency arguments based on measurement theory show that the gravitational field must be quantized. Motivated by the argument of Eppley and Hannah, we apply a DeWitt-type measurement analysis to a coupled system that consists of a gravitational wave interacting with a mass cube. We also review the arguments of Eppley and Hannah and of DeWitt, and investigate a second model in which a gravitational wave interacts with a quantized scalar field. We argue that one cannot conclude from the existing gedanken experiments that gravity has to be quantized. Despite the many physical arguments which speak in favor of a quantum theory of gravity, it appears that the justification for such a theory must be based on empirical tests and does not follow from logical arguments alone.Comment: 31 pages, many conceptual clarifications included, new appendix added, to appear in Phys. Rev.

    Comparative study of the extracellular proteome of Sulfolobus species reveals limited secretion

    Get PDF
    Although a large number of potentially secreted proteins can be predicted on the basis of genomic distribution of signal sequence-bearing proteins, protein secretion in Archaea has barely been studied. A proteomic inventory and comparison of the growth medium proteins in three hyperthermoacidophiles, i.e., Sulfolobus solfataricus, S. acidocaldarius and S. tokodaii, indicates that only few proteins are freely secreted into the growth medium and that the majority originates from cell envelope bound forms. In S. acidocaldarius both cell-associated and secreted α-amylase activities are detected. Inactivation of the amyA gene resulted in a complete loss of activity, suggesting that the same protein is responsible for the a-amylase activity at both locations. It is concluded that protein secretion in Sulfolobus is a limited process, and it is suggested that the S-layer may act as a barrier for the free diffusion of folded proteins into the medium

    High resolution propagation-based lung imaging at clinically relevant X-ray dose levels

    Get PDF
    Absorption-based clinical computed tomography (CT) is the current imaging method of choice in the diagnosis of lung diseases. Many pulmonary diseases are affecting microscopic structures of the lung, such as terminal bronchi, alveolar spaces, sublobular blood vessels or the pulmonary interstitial tissue. As spatial resolution in CT is limited by the clinically acceptable applied X-ray dose, a comprehensive diagnosis of conditions such as interstitial lung disease, idiopathic pulmonary fibrosis or the characterization of small pulmonary nodules is limited and may require additional validation by invasive lung biopsies. Propagation-based imaging (PBI) is a phase sensitive X-ray imaging technique capable of reaching high spatial resolutions at relatively low applied radiation dose levels. In this publication, we present technical refinements of PBI for the characterization of different artificial lung pathologies, mimicking clinically relevant patterns in ventilated fresh porcine lungs in a human-scale chest phantom. The combination of a very large propagation distance of 10.7 m and a photon counting detector with [Formula: see text] pixel size enabled high resolution PBI CT with significantly improved dose efficiency, measured by thermoluminescence detectors. Image quality was directly compared with state-of-the-art clinical CT. PBI with increased propagation distance was found to provide improved image quality at the same or even lower X-ray dose levels than clinical CT. By combining PBI with iodine k-edge subtraction imaging we further demonstrate that, the high quality of the calculated iodine concentration maps might be a potential tool for the analysis of lung perfusion in great detail. Our results indicate PBI to be of great value for accurate diagnosis of lung disease in patients as it allows to depict pathological lesions non-invasively at high resolution in 3D. This will especially benefit patients at high risk of complications from invasive lung biopsies such as in the setting of suspected idiopathic pulmonary fibrosis (IPF)

    Egr3 Dependent Sympathetic Target Tissue Innervation in the Absence of Neuron Death

    Get PDF
    Nerve Growth Factor (NGF) is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS) development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation

    Responsible, safe, and effective prescription of opioids for chronic non-cancer pain: American society of interventional pain physicians (ASIPP) guidelines

    Get PDF
    Background: Opioid use, abuse, and adverse consequences, including death, have escalated at an alarming rate since the 1990s. In an attempt to control opioid abuse, numerous regulations and guidelines for responsible opioid prescribing have been developed by various organizations. However, the US opioid epidemic is continuing and drug dose deaths tripled during 1999 to 2015. Recent data show a continuing increase in deaths due to natural and semisynthetic opioids, a decline in methadone deaths, and an explosive increase in the rates of deaths involving other opioids, specifically heroin and illicit synthetic fentanyl. Contrary to scientific evidence of efficacy and negative recommendations, a significant proportion of physicians and patients (92%) believe that opioids reduce pain and a smaller proportion (57%) report better quality of life. In preparation of the current guidelines, we have focused on the means to reduce the abuse and diversion of opioids without jeopardizing access for those patients suffering from non-cancer pain who have an appropriate medical indication for opioid use. Objectives: To provide guidance for the prescription of opioids for the management of chronic non-cancer pain, to develop a consistent philosophy among the many diverse groups with an interest in opioid use as to how appropriately prescribe opioids, to improve the treatment of chronic non-cancer pain and to reduce the likelihood of drug abuse and diversion. These guidelines are intended to provide a systematic and standardized approach to this complex and difficult arena of practice, while recognizing that every clinical situation is unique. Methods: The methodology utilized included the development of objectives and key questions. The methodology also utilized trustworthy standards, appropriate disclosures of conflicts of interest, as well as a panel of experts from various specialties and groups. The literature pertaining to opioid use, abuse, effectiveness, and adverse consequences was reviewed, with a best evidence synthesis of the available literature, and utilized grading for recommendation as described by the Agency for Healthcare Research and Quality (AHRQ)
    corecore