240 research outputs found

    Nano-metering of Solvated Biomolecules Or Nanoparticles from Water Self-Diffusivity in Bio-inspired Nanopores

    Get PDF
    Taking inspiration from the structure of diatom algae frustules and motivated by the need for new detecting strategies for emerging nanopollutants in water, we analyze the potential of nanoporous silica tablets as metering devices for the concentration of biomolecules or nanoparticles in water. The concept relies on the different diffusion behavior that water molecules exhibit in bulk and nanoconfined conditions, e.g., in nanopores. In this latter situation, the self-diffusion coefficient of water reduces according to the geometry and surface properties of the pore and to the concentration of suspended biomolecules or nanoparticles in the pore, as extensively demonstrated in a previous study. Thus, for a given pore-liquid system, the self-diffusivity of water in nanopores filled with biomolecules or nanoparticles provides an indirect measure of their concentration. Using molecular dynamics and previous results from the literature, we demonstrate the correlation between the self-diffusion coefficient of water in silica nanopores and the concentration of proteins or nanoparticles contained therein. Finally, we estimate the time required for the nanoparticles to fill the nanopores, in order to assess the practical feasibility of the overall nano-metering protocol. Results show that the proposed approach may represent an alternative method for assessing the concentration of some classes of nanopollutants or biomolecules in water

    Characterisation and modelling of water wicking and evaporation in capillary porous media for passive and energy-efficient applications

    Get PDF
    Passive devices based on water wicking and evaporation offer a robust, cheap, off-grid, energy-efficient and sustainable alternative to a wide variety of applications, ranging from personal thermal management to water treatment, from filtration to sustainable cooling technologies. Among the available, highly-engineered materials currently employed for these purposes, polyethylene-based fabrics offer a promising alternative thanks to the precise control of their fabrication parameters, their light-weight, thermal and mechanical properties, chemical stability and sustainability. As such, both woven and non-woven fabrics are commonly used in capillary-fed devices, and their wicking properties have been extensively modelled relying on analytical equations. However, a comprehensive and flexible modelling framework able to investigate and couple all the heat and mass transfer phenomena regulating the water dynamics in complex 2-D and 3-D porous components is currently missing. This work presents a comprehensive theoretical model aimed to investigate the wetting and drying performance of hydrophilic porous materials depending on their structural properties and on the external environmental conditions. The model is first validated against experiments (R2=0.99 for the wicking model; errors lower than 14% and 1% for the evaporation and radiative models, respectively), then employed in three application cases: the characterisation of the capillary properties of a novel textile; the assessment of the thermal performance of a known material for personal thermal management when used in different conditions; the model-assisted design of a porous hydrophilic component of passive devices for water desalination. The obtained results showed a deep interconnection between the different heat and mass transfer mechanisms, the porous structure and external working conditions. Thus, modelling their non-linear behaviour plays a crucial role in determining the optimal material characteristics to maximise the performance of porous materials for passive devices for the energy and water sector

    Multi-Scale Modelling of Aggregation of TiO2 Nanoparticle Suspensions in Water

    Get PDF
    Titanium dioxide nanoparticles have risen concerns about their possible toxicity and the European Food Safety Authority recently banned the use of TiO2 nano-additive in food products. Following the intent of relating nanomaterials atomic structure with their toxicity without having to conduct large-scale experiments on living organisms, we investigate the aggregation of titanium dioxide nanoparticles using a multi-scale technique: starting from ab initio Density Functional Theory to get an accurate determination of the energetics and electronic structure, we switch to classical Molecular Dynamics simulations to calculate the Potential of Mean Force for the connection of two identical nanoparticles in water; the fitting of the latter by a set of mathematical equations is the key for the upscale. Lastly, we perform Brownian Dynamics simulations where each nanoparticle is a spherical bead. This coarsening strategy allows studying the aggregation of a few thousand nanoparticles. Applying this novel procedure, we find three new molecular descriptors, namely, the aggregation free energy and two numerical parameters used to correct the observed deviation from the aggregation kinetics described by the Smoluchowski theory. Ultimately, molecular descriptors can be fed into QSAR models to predict the toxicity of a material knowing its physicochemical properties, enabling safe design strategies

    3D printed lattice metal structures for enhanced heat transfer in latent heat storage systems

    Get PDF
    The low thermal conductivity of Phase Change Materials (PCMs), e.g., paraffin waxes, is one of the main drawbacks of latent heat storage, especially when fast charging and discharging cycles are required. The introduction of highly conductive fillers in the PCM matrix may be an effective solution; however, it is difficult to grant their stable and homogeneous dispersion, which therefore limits the resulting enhancement of the overall thermal conductivity. Metal 3D printing or additive manufacturing, instead, allows to manufacture complex geometries with precise patterns, therefore allowing the design of optimal paths for heat conduction within the PCM. In this work, a device-scale latent heat storage system operating at medium temperatures (similar to 90 celcius) was manufactured and characterized. Its innovative design relies on a 3D Cartesian metal lattice, fabricated via laser powder bed fusion, to achieve higher specific power densities. Numerical and experimental tests demonstrated remarkable specific power (approximately 714 +/- 17 W kg-1 and 1310 +/- 48 W kg-1 during heat charge and discharge, respectively). Moreover, the device performance remained stable over multiple charging and discharging cycles. Finally, simulation results were used to infer general design guidelines to further enhance the device performance. This work aims at promoting the use of metal additive manufacturing to design efficient and responsive thermal energy storage units for medium-sized applications, such as in the automotive sector (e.g. speed up of the engine warm up or as an auxiliary for other enhanced thermal management strategies)

    Pierce the ear and stab the spleen

    Get PDF
    Splenic abscess is a rare but extremely dangerous condition generally spreading from a local, or systemic, focus of infection. We present the case of a young immunocompetent female admitted with sepsis and multiple splenic abscesses. The patient had a recent left ear piercing on the tragus complicated by an ear infection. The presence of a solitary parotid abscess, the absence of other infectious foci on computed tomography scan, the negativity of blood cultures and the absence of endocarditis vegetations led us to think that the most likely culprit was a hematogenous dissemination from the left tragus. The patient was successfully treated with intravenous antibiotics. There had been no need of splenectomy or any other procedure. This rather unique case underscores that splenic abscess should be suspected when a long-lasting fever and pain in the left hypochondrium are present, even when an apparently innocuous invasive procedure, such as a body piercing, is performed

    1001–24 Local Delivery of Urokinase to Porcine Coronary Arteries Using the Localmed Infusion Sleeve

    Get PDF
    Local Delivery of thrombolytic agents may reduce thrombus formation after balloon angioplasty. The Localmed Infusion Sleeve enables localized infusion of urokinase to be performed at the time of balloon angioplasty without the need for catheter exchange.MethodsBalloon angioplasty was performed on 13 coronary arteries of 5 pigs at 4 atmospheres with a balloon to artery ratio of approximately 1.1 to 1. After angioplasty the Infusion Sleeve was advanced over the dilatation balloon and the balloon was reinflated to 2 atmospheres to appose the sleeve to the vessel wall. 50,000 Units (8 cc) of 123l-urokinase was infused through the microperforations in the sleeve for 10 seconds by a computer controlled pump. The coronaries were then excised and counted in a gamma counter.ResultsConclusions(1) The Localmed Infusion Sleeve enables drug infusion to be uncoupled from balloon dilatation. (2) Successful delivery of Urokinase to the vessel wall may be achieved using this device without the need for catheter exchange. (3) Persistence of urokinase within the vessel wall occurs after local delivery

    Sustainable polyethylene fabrics with engineered moisture transport for passive cooling

    Get PDF
    Polyethylene (PE) has emerged recently as a promising polymer for incorporation in wearable textiles owing to its high infrared transparency and tuneable visible opacity, which allows the human body to cool via thermal radiation, potentially saving energy on building refrigeration. Here, we show that single-material PE fabrics may offer a sustainable, high-performance alternative to conventional textiles, extending beyond radiative cooling. PE fabrics exhibit ultra-light weight, low material cost and recyclability. Industrial materials sustainability (Higg) index calculations predict a low environmental footprint for PE fabrics in the production phase. We engineered PE fibres, yarns and fabrics to achieve efficient water wicking and fast-drying performance which, combined with their excellent stain resistance, offer promise in reducing energy and water consumption as well as the environmental footprint of PE textiles in their use phase. Unlike previously explored nanoporous PE materials, the high-performance PE fabrics in this study are made from fibres melt spun and woven on standard equipment used by the textile industry worldwide and do not require any chemical coatings. We further demonstrate that these PE fibres can be dry coloured during fabrication, resulting in dramatic water savings without masking the PE molecular fingerprints scanned during the automated recycling process

    Nucleotide excision repair gene variants and association with survival in osteosarcoma patients treated with neoadjuvant chemotherapy

    Get PDF
    The aim of this study was to investigate the role of common polymorphisms in the NER pathway genes in the tumorigenesis of osteosarcoma and in the response to DNA damaging therapies, such as cisplatin-based neoadjuvant therapy. XPD (rs13181 and rs1799793), XPG (rs17655), and ERCC1 (rs3212986 and rs11615) polymorphisms were analysed in a group of 130 homogenously-treated patients with high-grade osteosarcoma for association with event free survival (EFS) using Kaplan-Meier plots and log-rank test. A positive association was observed between both XPD SNPs and an increased EFS (HR= 0.34, 95% CI 0.12-0.98 and HR= 0.19, 95% CI 0.05-0.77, respectively). We had also performed a case-control study for relative risk to develop osteosarcoma. Patients carrying at least one variant allele of XPD rs1799793 had a reduced risk of developing osteosarcoma compared to wild type patients (OR=0.55, 95% CI 0.36-0.84).This study suggests that XPD rs1799793 could be a marker of osteosarcoma associated with features conferring either a better prognosis or a better outcome after platinum therapy, or both

    Sustainable polyethylene fabrics with engineered moisture transport for passive cooling

    Get PDF
    Polyethylene (PE) has emerged recently as a promising polymer for incorporation in wearable textiles owing to its high infrared transparency and tuneable visible opacity, which allows the human body to cool via thermal radiation, potentially saving energy on building refrigeration. Here, we show that single-material PE fabrics may offer a sustainable, high-performance alternative to conventional textiles, extending beyond radiative cooling. PE fabrics exhibit ultra-light weight, low material cost and recyclability. Industrial materials sustainability (Higg) index calculations predict a low environmental footprint for PE fabrics in the production phase. We engineered PE fibres, yarns and fabrics to achieve efficient water wicking and fast-drying performance which, combined with their excellent stain resistance, offer promise in reducing energy and water consumption as well as the environmental footprint of PE textiles in their use phase. Unlike previously explored nanoporous PE materials, the high-performance PE fabrics in this study are made from fibres melt spun and woven on standard equipment used by the textile industry worldwide and do not require any chemical coatings. We further demonstrate that these PE fibres can be dry coloured during fabrication, resulting in dramatic water savings without masking the PE molecular fingerprints scanned during the automated recycling process.The textile industry is one of the largest polluters. Here the authors show that polyethylene is a sustainable alternative textile with water wicking and fast-drying performance. The fabrication of polyethylene fabrics is compatible with standard equipment and could be dry-coloured, further reducing water consumption
    • …
    corecore