75 research outputs found

    Respective influences of pair breaking and phase fluctuations in disordered high Tc superconductors

    Full text link
    Electron irradiation has been used to introduce point defects in a controlled way in the CuO2 planes of underdoped and optimally doped YBCO. This technique allows us to perform very accurate measurements of Tc and of the residual resistivity in a wide range of defect contents xd down to Tc=0. The Tc decrease does not follow the variation expected from pair breaking theories. The evolutions of Tc and of the transition width with xd emphasize the importance of phase fluctuations, at least for the highly damaged regime. These results open new questions about the evolution of the defect induced Tc depression over the phase diagram of the cupratesComment: 5 pages, 4 figure

    Synthesis of sodium cobaltate Nax_{x}CoO2_{2} single crystals with controlled Na ordering

    Full text link
    In this study, we synthesized single crystals of Nax_{x}CoO2_{2} with x∼0.8x\sim0.8 using the optical floating zone technique. A thorough electrochemical treatment of the samples permitted us to control the de-intercalation of Na to obtain single crystal samples of stable Na ordered phases with x=0.5−0.8x=0.5-0.8. Comparisons of the bulk magnetic properties with those observed in the Na ordered powder samples confirmed the high quality of these single crystal phases. The ab plane resistivity was measured for the Na ordered samples and it was quite reproducible for different sample batches. The data were analogous to those found in previous initial experimental studies on single crystals, but the lower residual resistivity and sharper anti-ferromagnetic transitions determined for our samples confirmed their higher quality.Comment: 15 pages, 7 figure

    Nernst effect and disorder in the normal state of high-T_{c} cuprates

    Full text link
    We have studied the influence of disorder induced by electron irradiation on the Nernst effect in optimally and underdoped YBa2Cu3O(7-d) single crystals. The fluctuation regime above T_{c} expands significantly with disorder, indicating that the T_{c} decrease is partly due to the induced loss of phase coherence. In pure crystals the temperature extension of the Nernst signal is found to be narrow whatever the hole doping, contrary to data reported in the low-T_{c} cuprates families. Our results show that the presence of "intrinsic" disorder can explain the enhanced range of Nernst signal found in the pseudogap phase of the latter compounds.Comment: revised version. to be published in Physical Review Letter

    Na atomic order, Co charge disproportionation and magnetism in Nax_{x}CoO2_{2} for large Na contents

    Full text link
    We have synthesized and characterized four different stable phases of Na ordered Nax_{x}CoO2_{2}, for 0.65<x<0.80.65<x<0.8. Above 100 K they display similar Curie-Weiss susceptibilities as well as ferromagnetic q=0q=0 spin fluctuations in the CoO2_{2} planes revealed by 23^{23}Na NMR data. In all phases from 59^{59}Co NMR data we display evidences that the Co disproportionate already above 300 K into non magnetic Co3+^{3+} and magnetic ≈\approx Co3.5+^{3.5+} sites on which holes delocalize. This allows us to understand that metallic magnetism is favored for these large Na contents. Below 100 K the phases differentiate, and a magnetic order sets in only for x≳0.75x\gtrsim 0.75 at TN=T_{N}=22 K. We suggest that the charge order also governs the low TT energy scales and transverse couplings

    Glitz

    Get PDF
    The crystal structure of the orthorhombic and tetragonal phases of La(Ba 2-xLax)Cu3-yO 6+x/2-y+ z are determined on twinned crystals. The orthorhombic structure, obtained for low x, is close to the regular Y-Ba-Cu-O type (twin a * b * c-b * a * c), but is highly copper deficient on the Cu(1) site (~ 30 %). The local correlations (ξ ~ 20 Å) between copper atoms and vacancies, as deduced from X-ray diffuse scattering, correspond to a short-range segregation of vacancies in chains. As a consequence of the large amount of defects, these crystals are non-typical semiconductors. The tetragonal structure, x ≃ 0.50, leads to tri-twinned crystals with 90° faulting, a * a * 3 a-a * 3 a * a -3 a * a * a (a, the perovskite lattice constant). In these materials the copper sites are found to be strongly anharmonic. This is due to the disorder introduced by the La-Ba substitution. These crystals are also semiconductors with a T-1/4 activation law for the conductivity which indicates that variable range hopping is expected to set in, a consequence of localization by the disorder

    Disorder and transport in cuprates: weak localization and magnetic contributions

    Get PDF
    We report resistivity measurements in underdoped YBa2_{2}Cu3_{3}O6.6_{6.6} and overdoped Tl2_{2}Ba2_{2}CuO6+x_{6+x} single crystals in which the concentration of defects in the CuO2_{2} planes is controlled by electron irradiation. Low TT upturns of the resistivity are observed in both cases for large defect content. In the Tl compound the decrease of conductivity scales as expected from weak localization theory. On the contrary in YBa2_{2}Cu3_{3}O6.6_{6.6} the much larger low T contribution to the resistivity is proportional to the defect content and might then be associated to a Kondo like spin flip scattering term. This would be consistent with the results on the magnetic properties induced by spinless defects.Comment: latex rullier1.tex, 5 files, 4 pages [SPEC-S01/003], submitted to Phys. Rev. Let

    High-field muSR studies of superconducting and magnetic correlations in cuprates above Tc

    Full text link
    The advent of high transverse-field muon spin rotation (TF-muSR) has led to recent muSR investigations of the magnetic-field response of cuprates above the superconducting transition temperature T_c. Here the results of such experiments on hole-doped cuprates are reviewed. Although these investigations are currently ongoing, it is clear that the effects of high field on the internal magnetic field distribution of these materials is dependent upon a competition between superconductivity and magnetism. In La_{2-x}Sr_xCuO_4 the response to the external field above Tc is dominated by heterogeneous spin magnetism. However, the magnetism that dominates the observed inhomogeneous line broadening below x ~ 0.19 is overwhelmed by the emergence of a completely different kind of magnetism in the heavily overdoped regime. The origin of the magnetism above x ~ 0.19 is currently unknown, but its presence hints at a competition between superconductivity and magnetism that is reminiscent of the underdoped regime. In contrast, the width of the internal field distribution of underdoped YBa_2Cu_3O_y above Tc is observed to track Tc and the density of superconducting carriers. This observation suggests that the magnetic response above Tc is not dominated by electronic moments, but rather inhomogeneous fluctuating superconductivity.Comment: 28 pages, 11 figures, 104 reference

    Planar 17O NMR study of Pr_yY_{1-y}Ba_2Cu_3O_{6+x}

    Full text link
    We report the planar ^{17}O NMR shift in Pr substituted YBa_{2}Cu_{3}O_{6+x}, which at x=1 exhibits a characteristic pseudogap temperature dependence, confirming that Pr reduces the concentration of mobile holes in the CuO_{2} planes. Our estimate of the rate of this counterdoping effect, obtained by comparison with the shift in pure samples with reduced oxygen content, is found insufficient to explain the observed reduction of T_c. From the temperature dependent magnetic broadening of the ^{17}O NMR we conclude that the Pr moment and the local magnetic defect induced in the CuO_2 planes produce a long range spin polarization in the planes, which is likely associated with the extra reduction of T_c. We find a qualitatively different behaviour in the oxygen depleted Pr_yY_{1-y}Ba_2Cu_3O_{6.6}, i.e. the suppression of Tc_c is nearly the same, but the magnetic broadening of the ^{17}O NMR appears weaker. This difference may signal a weaker coupling of the Pr to the planes in the underdoped compound, which might be linked with the larger Pr to CuO_2 plane distance, and correspondingly weaker hybridization.Comment: 8 pages, 9 figures, accepted in Phys Rev

    Observation of the Nernst signal generated by fluctuating Cooper pairs

    Full text link
    Long-range order is destroyed in a superconductor warmed above its critical temperature (Tc). However, amplitude fluctuations of the superconducting order parameter survive and lead to a number of well established phenomena such as paraconductivity : an excess of charge conductivity due to the presence of short-lived Cooper pairs in the normal state. According to an untested theory, these pairs generate a transverse thermoelectric (Nernst) signal. In amorphous superconducting films, the lifetime of Cooper pairs exceeds the elastic lifetime of quasi-particles in a wide temperature range above Tc; consequently, the Cooper pairs Nernst signal dominate the response of the normal electrons well above Tc. In two dimensions, the magnitude of the expected signal depends only on universal constants and the superconducting coherence length, so the theory can be unambiguously tested. Here, we report on the observation of a Nernst signal in such a superconductor traced deep into the normal state. Since the amplitude of this signal is in excellent agreement with the theoretical prediction, the result provides the first unambiguous case for a Nernst effect produced by short-lived Cooper pairs

    Electron transport and anisotropy of the upper critical magnetic field in a Ba0.68K0.32Fe2As2 single crystals

    Full text link
    Early work on the iron-arsenide compounds supported the view, that a reduced dimensionality might be a necessary prerequisite for high-Tc superconductivity. Later, however, it was found that the zero-temperature upper critical magnetic field, Hc2(0), for the 122 iron pnictides is in fact rather isotropic. Here, we report measurements of the temperature dependence of the electrical resistivity, \Gamma(T), in Ba0.5K0.5Fe2As2 and Ba0.68K0.32Fe2As2 single crystals in zero magnetic field and for Ba0.68K0.32Fe2As2 as well in static and pulsed magnetic fields up to 60 T. We find that the resistivity of both compounds in zero field is well described by an exponential term due to inter-sheet umklapp electron-phonon scattering between light electrons around the M point to heavy hole sheets at the \Gamma point in reciprocal space. From our data, we construct an H-T phase diagram for the inter-plane (H || c) and in-plane (H || ab) directions for Ba0.68K0.32Fe2As2. Contrary to published data for underdoped 122 FeAs compounds, we find that Hc2(T) is in fact anisotropic in optimally doped samples down to low temperatures. The anisotropy parameter, {\gamma} = Habc2/Hcc2, is about 2.2 at Tc. For both field orientations we find a concave curvature of the Hc2 lines with decreasing anisotropy and saturation towards lower temperature. Taking into account Pauli spin paramagnetism we perfectly can describe Hc2(T) and its anisotropy.Comment: 7 pages, 3 figure
    • …
    corecore