1,346 research outputs found

    Study of the one-dimensional off-lattice hot-monomer reaction model

    Full text link
    Hot monomers are particles having a transient mobility (a ballistic flight) prior to being definitely absorbed on a surface. After arriving at a surface, the excess energy coming from the kinetic energy in the gas phase is dissipated through degrees of freedom parallel to the surface plane. In this paper we study the hot monomer-monomer adsorption-reaction process on a continuum (off-lattice) one-dimensional space by means of Monte Carlo simulations. The system exhibits second-order irreversible phase transition between a reactive and saturated (absorbing) phases which belong to the directed percolation (DP) universality class. This result is interpreted by means of a coarse-grained Langevin description which allows as to extend the DP conjecture to transitions occurring in continuous media.Comment: 13 pages, 5 figures, final version to appear in J. Phys.

    Optimization of the transmission of observable expectation values and observable statistics in Continuous Variable Teleportation

    Full text link
    We analyze the statistics of observables in continuous variable quantum teleportation in the formalism of the characteristic function. We derive expressions for average values of output state observables in particular cumulants which are additive in terms of the input state and the resource of teleportation. Working with Squeezed Bell-like states, which may be optimized in a free parameter for better teleportation performance we discuss the relation between resources optimal for fidelity and for different observable averages. We obtain the values of the free parameter which optimize the central momenta and cumulants up to fourth order. For the cumulants the distortion between in and out states due to teleportation depends only on the resource. We obtain optimal parameters for the second and fourth order cumulants which do not depend on the squeezing of the resource. The second order central momenta which is equal to the second order cumulants and the photon number average are optimized by the same resource. We show that the optimal fidelity resource, found in reference (Phys. Rev. A {\bf 76}, 022301 (2007)) to depend also on the characteristics of input, tends for high squeezing to the resource which optimizes the second order momenta. A similar behavior is obtained for the resource which optimizes the photon statistics which is treated here using the sum of the squared differences in photon probabilities of input and output states as the distortion measure. This is interpreted to mean that the distortions associated to second order momenta dominates the behavior of the output state for large squeezing of the resource. Optimal fidelity and optimal photon statistics resources are compared and is shown that for mixtures of Fock states they are equivalent.Comment: 25 pages, 11 figure

    Husimi's Q(α)Q(\alpha) function and quantum interference in phase space

    Full text link
    We discuss a phase space description of the photon number distribution of non classical states which is based on Husimi's Q(α)Q(\alpha) function and does not rely in the WKB approximation. We illustrate this approach using the examples of displaced number states and two photon coherent states and show it to provide an efficient method for computing and interpreting the photon number distribution . This result is interesting in particular for the two photon coherent states which, for high squeezing, have the probabilities of even and odd photon numbers oscillating independently.Comment: 15 pages, 12 figures, typos correcte

    Measurements of the Yield Stress in Frictionless Granular Systems

    Full text link
    We perform extensive molecular dynamics simulations of 2D frictionless granular materials to determine whether these systems can be characterized by a single static yield shear stress. We consider boundary-driven planar shear at constant volume and either constant shear force or constant shear velocity. Under steady flow conditions, these two ensembles give similar results for the average shear stress versus shear velocity. However, near jamming it is possible that the shear stress required to initiate shear flow can differ substantially from the shear stress required to maintain flow. We perform several measurements of the shear stress near the initiation and cessation of flow. At fixed shear velocity, we measure the average shear stress Σyv\Sigma_{yv} in the limit of zero shear velocity. At fixed shear force, we measure the minimum shear stress Σyf\Sigma_{yf} required to maintain steady flow at long times. We find that in finite-size systems Σyf>Σyv\Sigma_{yf} > \Sigma_{yv}, which implies that there is a jump discontinuity in the shear velocity from zero to a finite value when these systems begin flowing at constant shear force. However, our simulations show that the difference ΣyfΣyv\Sigma_{yf} - \Sigma_{yv}, and thus the discontinuity in the shear velocity, tend to zero in the infinite system size limit. Thus, our results indicate that in the large system limit, frictionless granular systems are characterized by a single static yield shear stress. We also monitor the short-time response of these systems to applied shear and show that the packing fraction of the system and shape of the velocity profile can strongly influence whether or not the shear stress at short times overshoots the long-time average value.Comment: 7 pages and 6 figure

    On the Squeezed Number States and their Phase Space Representations

    Get PDF
    We compute the photon number distribution, the Q distribution function and the wave functions in the momentum and position representation for a single mode squeezed number state using generating functions which allow to obtain any matrix element in the squeezed number state representation from the matrix elements in the squeezed coherent state representation. For highly squeezed number states we discuss the previously unnoted oscillations which appear in the Q function. We also note that these oscillations can be related to the photon-number distribution oscillations and to the momentum representation of the wave function.Comment: 16 pages, 9 figure

    Effect of Gravity and Confinement on Phase Equilibria: A Density Matrix Renormalization Approach

    Full text link
    The phase diagram of the 2D Ising model confined between two infinite walls and subject to opposing surface fields and to a bulk "gravitational" field is calculated by means of density matrix renormalization methods. In absence of gravity two phase coexistence is restricted to temperatures below the wetting temperature. We find that gravity restores the two phase coexistence up to the bulk critical temperature, in agreement with previous mean-field predictions. We calculate the exponents governing the finite size scaling in the temperature and in the gravitational field directions. The former is the exponent which describes the shift of the critical temperature in capillary condensation. The latter agrees, for large surface fields, with a scaling assumption of Van Leeuwen and Sengers. Magnetization profiles in the two phase and in the single phase region are calculated. The profiles in the single phase region, where an interface is present, agree well with magnetization profiles calculated from a simple solid-on-solid interface hamiltonian.Comment: 4 pages, RevTeX and 4 PostScript figures included. Final version as published. To appear in Phys. Rev. Let

    SPH modeling of water-related natural hazards

    Get PDF
    This paper collects some recent smoothed particle hydrodynamic (SPH) applications in the field of natural hazards connected to rapidly varied flows of both water and dense granular mixtures including sediment erosion and bed load transport. The paper gathers together and outlines the basic aspects of some relevant works dealing with flooding on complex topography, sediment scouring, fast landslide dynamics, and induced surge wave. Additionally, the preliminary results of a new study regarding the post-failure dynamics of rainfall-induced shallow landslide are presented. The paper also shows the latest advances in the use of high performance computing (HPC) techniques to accelerate computational fluid dynamic (CFD) codes through the efficient use of current computational resources. This aspect is extremely important when simulating complex three-dimensional problems that require a high computational cost and are generally involved in the modeling of water-related natural hazards of practical interest. The paper provides an overview of some widespread SPH free open source software (FOSS) codes applied to multiphase problems of theoretical and practical interest in the field of hydraulic engineering. The paper aims to provide insight into the SPH modeling of some relevant physical aspects involved in water-related natural hazards (e.g., sediment erosion and non-Newtonian rheology). The future perspectives of SPH in this application field are finally pointed out

    A numerical study of the development of bulk scale-free structures upon growth of self-affine aggregates

    Full text link
    During the last decade, self-affine geometrical properties of many growing aggregates, originated in a wide variety of processes, have been well characterized. However, little progress has been achieved in the search of a unified description of the underlying dynamics. Extensive numerical evidence has been given showing that the bulk of aggregates formed upon ballistic aggregation and random deposition with surface relaxation processes can be broken down into a set of infinite scale invariant structures called "trees". These two types of aggregates have been selected because it has been established that they belong to different universality classes: those of Kardar-Parisi-Zhang and Edward-Wilkinson, respectively. Exponents describing the spatial and temporal scale invariance of the trees can be related to the classical exponents describing the self-affine nature of the growing interface. Furthermore, those exponents allows us to distinguish either the compact or non-compact nature of the growing trees. Therefore, the measurement of the statistic of the process of growing trees may become a useful experimental technique for the evaluation of the self-affine properties of some aggregates.Comment: 19 pages, 5 figures, accepted for publication in Phys.Rev.

    Non-equilibrium Phase Transitions with Long-Range Interactions

    Full text link
    This review article gives an overview of recent progress in the field of non-equilibrium phase transitions into absorbing states with long-range interactions. It focuses on two possible types of long-range interactions. The first one is to replace nearest-neighbor couplings by unrestricted Levy flights with a power-law distribution P(r) ~ r^(-d-sigma) controlled by an exponent sigma. Similarly, the temporal evolution can be modified by introducing waiting times Dt between subsequent moves which are distributed algebraically as P(Dt)~ (Dt)^(-1-kappa). It turns out that such systems with Levy-distributed long-range interactions still exhibit a continuous phase transition with critical exponents varying continuously with sigma and/or kappa in certain ranges of the parameter space. In a field-theoretical framework such algebraically distributed long-range interactions can be accounted for by replacing the differential operators nabla^2 and d/dt with fractional derivatives nabla^sigma and (d/dt)^kappa. As another possibility, one may introduce algebraically decaying long-range interactions which cannot exceed the actual distance to the nearest particle. Such interactions are motivated by studies of non-equilibrium growth processes and may be interpreted as Levy flights cut off at the actual distance to the nearest particle. In the continuum limit such truncated Levy flights can be described to leading order by terms involving fractional powers of the density field while the differential operators remain short-ranged.Comment: LaTeX, 39 pages, 13 figures, minor revision
    corecore