6 research outputs found

    Probing phospholipid microbubbles by atomic force microscopy to quantify bubble mechanics and nanostructural shell properties

    Get PDF
    Microbubbles (MBs), which are used as ultrasonic contrast agents, have distinct acoustic signatures which enable them to significantly enhance visualisation of the vasculature. Research is progressing to develop MBs which act as drug/gene delivery vehicles for site-specific therapeutics. In order to manufacture effective theranostic vehicles, it is imperative to understand the mechanical and nanostructural properties of these agents; this will enrich the understanding of how the structural, biophysical and chemical properties of these bubbles impact their functionality. We produced microfluidic phospholipid-based MBs due to their favourable properties, such as biocompatibility and echogenicity, as well as the ability to modify the shell for targeting applications. We have drawn upon atomic force microscopy to conduct force spectroscopy and tapping-mode imaging investigations. We have, for the first time to our knowledge, been able to accurately quantify the thickness and lipid configuration of phospholipid-shelled MBs - showing a trilayer as opposed to the conventional monolayer structure. Furthermore, we have measured MB stiffness and employed different mechanical theories to quantify the Young’s modulus. We show that the Reissner theory is inappropriate for mechanical characterisation of phospholipid MBs, however, the Hertz model does offer biologically relevant comparisons. Analysis using the Alexander-de Gennes polymer brush theory has allowed us to provide new information regarding how the thickness of the polyethylene glycol brushes, end-grafted to our phospholipid microbubbles, changes with diameter

    Bobbin Tool Friction Stir Welding of Aluminum: Parameters Optimization Using Taguchi Experimental Design

    No full text
    This work aims to optimize the performance evaluation characteristics such as the temperature at the weld center of the lap joint (Tw), the tensile shear load (TSL), and the hardness using an experimental design experiment for bobbin tool friction stir welding (BT-FSW) of AA1050 lap joints. BT-FSW is characterized by a fully penetrated pin and double-sided shoulder that promote symmetrical solid-state welds. This study contributes to improving the quality of 10 mm thick lap joints and addressing challenges to obtaining a sound weld deprived of any defects. Taguchi L9 orthogonal array (OA) experimental design was performed. Three different pin shapes (cylindrical, triangular, and square) and three levels of welding travel speeds of 200, 400, and 600 mm/min were selected as input controllable process parameters at a constant tool rotation speed of 600 rpm. A travel speed of 200 mm/min with square pin geometry significantly improves the TSL of the joint up to 6491 N. However, the hardness characteristic is optimized by using 600 mm/min travel speed and a cylindrical tool pin. The minimum temperature in the weld joint can be obtained using 600 mm/min or more with triangular pin geometry. From ANOVA results, it was seen that the BT-FSW of AA 1050 thick lap joints performance in terms of TLS and Tw were greatly influenced by travel speed; however, the tool shape influences the hardness more. For the validation of the models, BT-FSW experiments have been carried out for AA1050 using the applied processing parameters. Furthermore, regression models were developed to predict the Tw, TSL, and hardness. The calculated performance properties from the mathematical models were in an acceptable range compared to the measured experimental values

    Microstructure, Crystallographic Texture, and Mechanical Properties of Friction Stir Welded Mild Steel for Shipbuilding Applications

    No full text
    In the current work, mild steel used in shipbuilding applications was friction-stir-welded (FSWed) with the aim of investigating the microstructure and mechanical properties of the FSWed joints. Mild steel of 5 mm thickness was friction-stir-welded at a constant tool rotation rate of 500 rpm and two different welding speeds of 20 mm/min and 50 mm/min and 3° tool tilt angle. The microstructure of the joints was investigated using optical and scanning electron microscopes. Additionally, the grain structure and crystallographic texture of the nugget (NG) zone of the FSWed joints was investigated using electron backscattering diffraction (EBSD). Furthermore, the mechanical properties were investigated using both tensile testing and hardness testing. The microstructure of the low-welding-speed joint was found to consist of fine-grain ferrite and bainite (acicular ferrite) with an average grain size of 3 µm, which indicates that the temperature experienced above A1, where a ferrite and austenite mixture is formed, and upon cooling, the austenite transformed into bainite. The joint produced using high welding speed resulted in a microstructure consisting mainly of polygonal ferrite and pearlite. This could be due to the temperature far below A1 experienced during FSW. In terms of joint efficiency expressed in terms of relative ultimate tensile, the stress of the joint to the base material was found to be around 92% for the low-speed joint and 83% for the high-welding-speed joint. A reduction in welding was attributed to the microstructure, as well as the microtunnel defect formed near the advancing side of the joint. The tensile strain was preserved at 18% for low welding speed and increased to 24% for the high welding speed. This can be attributed to the NG zone microstructural constituents. In terms of crystallographic texture, it is dominated by a simple shear texture, with increased intensity achieved by increasing the welding speed. In both joints, the hardness was found to be significantly increased in the NG zone of the joints, with a greater increase in the case of the low-welding-speed joint. This hardness increase is mainly attributed to the fine-grained structure formed after FSW

    Microstructure, Crystallographic Texture, and Mechanical Properties of Friction Stir Welded Mild Steel for Shipbuilding Applications

    No full text
    In the current work, mild steel used in shipbuilding applications was friction-stir-welded (FSWed) with the aim of investigating the microstructure and mechanical properties of the FSWed joints. Mild steel of 5 mm thickness was friction-stir-welded at a constant tool rotation rate of 500 rpm and two different welding speeds of 20 mm/min and 50 mm/min and 3° tool tilt angle. The microstructure of the joints was investigated using optical and scanning electron microscopes. Additionally, the grain structure and crystallographic texture of the nugget (NG) zone of the FSWed joints was investigated using electron backscattering diffraction (EBSD). Furthermore, the mechanical properties were investigated using both tensile testing and hardness testing. The microstructure of the low-welding-speed joint was found to consist of fine-grain ferrite and bainite (acicular ferrite) with an average grain size of 3 µm, which indicates that the temperature experienced above A1, where a ferrite and austenite mixture is formed, and upon cooling, the austenite transformed into bainite. The joint produced using high welding speed resulted in a microstructure consisting mainly of polygonal ferrite and pearlite. This could be due to the temperature far below A1 experienced during FSW. In terms of joint efficiency expressed in terms of relative ultimate tensile, the stress of the joint to the base material was found to be around 92% for the low-speed joint and 83% for the high-welding-speed joint. A reduction in welding was attributed to the microstructure, as well as the microtunnel defect formed near the advancing side of the joint. The tensile strain was preserved at 18% for low welding speed and increased to 24% for the high welding speed. This can be attributed to the NG zone microstructural constituents. In terms of crystallographic texture, it is dominated by a simple shear texture, with increased intensity achieved by increasing the welding speed. In both joints, the hardness was found to be significantly increased in the NG zone of the joints, with a greater increase in the case of the low-welding-speed joint. This hardness increase is mainly attributed to the fine-grained structure formed after FSW

    Optimization of Bobbin Tool Friction Stir Processing Parameters of AA1050 Using Response Surface Methodology

    No full text
    The current research designed a statistical model for the bobbin tool friction stir processing (BT-FSP) of AA1050 aluminum alloy using the Response Surface Method (RSM). The analysis studied the influence of tool travel speeds of 100, 200, and 300 mm/min and different pin geometries (triangle, square, and cylindrical) at a constant tool rotation speed (RS) of 600 rpm on processing 8 mm thickness AA1050. The developed mathematical model optimizes the effect of the applied BT-FSP parameters on machine torque, processing zone (PZ) temperature, surface roughness, hardness values, and ultimate tensile strength (UTS). The experimental design is based on the Face Central Composite Design (FCCD), using linear and quadratic polynomial equations to develop the mathematical models. The results show that the proposed model adequately predicts the responses within the processing parameters, and the pin geometry is the most influential parameter during the BT-FSP of AA1050. The analysis of variance exhibit that the developed mathematical models can effectively predict the values of the machine torque, PZ temperature, surface roughness, hardness, and UTS with a confidence level of over 95% for the AA1050 BT-FSP. The optimization process shows that the optimum parameters to attain the highest mechanical properties in terms of hardness and tensile strength at the lowest surface roughness and machine torque are travel speed (TS) of 200 mm/min using cylindrical (Cy) pin geometry at the constant RS of 600 rpm. The PZ temperature of the processed specimens decreased with increasing TS at different pin geometries. Meanwhile, the surface roughness of the processed passes and machine torque increased with increasing the TS at different pin geometries. Increasing TS from 100 to 300 mm/min increases the hardness values of the processed materials using different pin geometries. The highest UTS of 79 MPa for the processed specimens was attained at the TS of 200 mm/min and RS of 600 rpm using the Cy pin geometry
    corecore