7 research outputs found

    Observation of double J/ψ\psi meson production in pPb collisions at sNN\sqrt{s_\mathrm{NN}} = 8.16 TeV

    No full text
    International audienceThe first observation of the concurrent production of two J/ψ\psi mesons in proton-nucleus collisions is presented. The analysis is based on a proton-lead (pPb) data sample recorded at a nucleon-nucleon center-of-mass energy of 8.16 TeV by the CMS experiment at the CERN LHC and corresponding to an integrated luminosity of 174.6 nb1^{-1}. The two J/ψ\psi mesons are reconstructed in their μ+μ\mu^+\mu^- decay channels with transverse momenta pTp_\mathrm{T}>\gt 6.5 GeV and rapidity y\lvert y \rvert<\lt 2.4. Events where one of the J/ψ\psi mesons is reconstructed in the dielectron channel are also considered in the search. The pPb \to J/ψ\psiJ/ψ\psi+X process is observed with a significance of 5.3 standard deviations. The measured inclusive fiducial cross section, using the four-muon channel alone, is σ\sigma(pPb\to J/ψ\psiJ/ψ\psi+X)= 22.0 ±\pm 8.9 (stat) ±\pm 1.5 (syst) nb. A fit of the data to the expected rapidity separation for pairs of J/ψ\psi mesons produced in single (SPS) and double (DPS) parton scatterings yields σSPSpPbJ/ψJ/ψ+X\sigma^{\mathrm{pPb}\to\mathrm{J}/\psi\mathrm{J}/\psi+\mathrm{X}}_\text{SPS} = 16.5 ±\pm 10.8 (stat) ±\pm 0.1 (syst) nb and σDPSpPbJ/ψJ/ψ+X\sigma^{\mathrm{pPb}\to \mathrm{J}/\psi\mathrm{J}/\psi+\mathrm{X}}_\text{DPS} = 5.4 ±\pm 6.2 (stat) ±\pm 0.4 (syst) nb, respectively. This latter result can be transformed into a lower bound on the effective DPS cross section, closely related to the squared average interparton transverse separation in the collision, of σeff\sigma_\text{eff}>\gt 1.0 mb at 95% confidence level

    Measurement of the polarizations of prompt and non-prompt J/ψ\psi and ψ\psi(2S) mesons produced in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe polarizations of prompt and non-prompt J/ψ/\psi and ψ\psi(2S) mesons are measured in proton-proton collisions at s\sqrt{s} = 13 TeV, using data samples collected by the CMS experiment in 2017 and 2018, corresponding to a total integrated luminosity of 103.3 fb1^{-1}. Based on the analysis of the dimuon decay angular distributions in the helicity frame, the polar anisotropy, λθ\lambda_\theta, is measured as a function of the transverse momentum, pTp_\mathrm{T}, of the charmonium states, in the 25-120 and 20-100 GeV ranges for the J/ψ/\psi and ψ\psi(2S), respectively. The non-prompt polarizations agree with predictions based on the hypothesis that, for pTp_\mathrm{T}\gtrsim 25 GeV, the non-prompt J/ψ/\psi and ψ\psi(2S) are predominantly produced in two-body B meson decays. The prompt results clearly exclude strong transverse polarizations, even for pTp_\mathrm{T} exceeding 30 times the J/ψ/\psi mass, where λθ\lambda_\theta tends to an asymptotic value around 0.3. Taken together with previous measurements, by CMS and LHCb at s\sqrt{s} = 7 TeV, the prompt polarizations show a significant variation with pTp_\mathrm{T}, at low pTp_\mathrm{T}

    Measurement of the ttˉ\mathrm{t\bar{t}}H and tH production rates in the H \tobbˉ\mathrm{b\bar{b}} decay channel using proton-proton collision data at s\sqrt{s} = 13 TeV

    No full text
    International audienceAn analysis of the production of a Higgs boson (H) in association with a top quark-antiquark pair (ttˉ\mathrm{t\bar{t}}H) or a single top quark (tH) is presented. The Higgs boson decay into a bottom quark-antiquark pair (H \tobbˉ\mathrm{b\bar{b}}) is targeted, and three different final states of the top quark decays are considered, defined by the number of leptons (electrons or muons) in the event. The analysis utilises proton-proton collision data collected at the CERN LHC with the CMS experiment at s\sqrt{s} = 13 TeV in 2016-2018, which correspond to an integrated luminosity of 138 fb1^{-1}. The observed ttˉ\mathrm{t\bar{t}}H production rate relative to the standard model expectation is 0.33 ±\pm 0.26 = 0.33 ±\pm 0.17 (stat) ±\pm 0.21 (syst). Additionally, the ttˉ\mathrm{t\bar{t}}H production rate is determined in intervals of Higgs boson transverse momentum. An upper limit at 95% confidence level is set on the tH production rate of 14.6 times the standard model prediction, with an expectation of 19.36.0+9.2^{+9.2}_{-6.0}. Finally, constraints are derived on the strength and structure of the coupling between the Higgs boson and the top quark from simultaneous extraction of the ttˉ\mathrm{t\bar{t}}H and tH production rates, and the results are combined with those obtained in other Higgs boson decay channels

    Measurement of the Bs0^0_\mathrm{s}\to J/ψ\psiKS0^0_\mathrm{S} effective lifetime from proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe effective lifetime of the Bs0^0_\mathrm{s} meson in the decay Bs0^0_\mathrm{s}\to J/ψ\psiKS0^0_\mathrm{S} is measured using data collected during 2016-2018 with the CMS detector in s\sqrt{s} = 13 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 140 fb1^{-1}. The effective lifetime is determined by performing a two-dimensional unbinned maximum likelihood fit to the Bs0^0_\mathrm{s} meson invariant mass and proper decay time distributions. The resulting value of 1.59 ±\pm 0.07 (stat) ±\pm 0.03 (syst) ps is the most precise measurement to date and is in good agreement with the expected value

    Model-independent search for pair production of new bosons decaying into muons in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe results of a model-independent search for the pair production of new bosons within a mass range of 0.21 <\ltmm<\lt 60 GeV, are presented. This study utilizes events with a four-muon final state. We use two data sets, comprising 41.5 fb1^{-1} and 59.7 fb1^{-1} of proton-proton collisions at s\sqrt{s} = 13 TeV, recorded in 2017 and 2018 by the CMS experiment at the CERN LHC. The study of the 2018 data set includes a search for displaced signatures of a new boson within the proper decay length range of 0 <\ltcτc\tau<\lt 100 μ\mum. Our results are combined with a previous CMS result, based on 35.9 fb1^{-1} of proton-proton collisions at s\sqrt{s} = 13 TeV collected in 2016. No significant deviation from the expected background is observed. Results are presented in terms of a model-independent upper limit on the product of cross section, branching fraction, and acceptance. The findings are interpreted across various benchmark models, such as an axion-like particle model, a vector portal model, the next-to-minimal supersymmetric standard model, and a dark supersymmetric scenario, including those predicting a non-negligible proper decay length of the new boson. In all considered scenarios, substantial portions of the parameter space are excluded, expanding upon prior results
    corecore