
1.5em

AN ABSTRACT OF THE DISSERTATION OF

Fawaz Alazemi for the degree of Doctor of Philosophy in Computer Science presented

on June 12, 2019.

Title: Routerless Network-on-chip

Abstract approved:
Bella Bose Lizhong Chen

Traditional bus-based interconnects are simple and easy to implement, but the scal-
ability is greatly limited. While router-based networks-on-chip (NoCs) offer superior
scalability, they also incur significant power and area overhead due to complex router
structures. In this thesis, a new class of on-chip networks, referred to as Routerless (RL)

NoCs, where routers are completely eliminated is explored. A novel design that utilizes
on-chip wiring resources smartly to achieve comparable hop count and scalability to
that of the router-based NoCs is proposed. Several effective techniques that significantly
reduce the resource requirement to avoid new network abnormalities in routerless NoC
designs are presented. Evaluation results show that, compared with a conventional mesh,
the proposed routerless NoC achieves 9.5X reduction in power, 7.2X reduction in area,
2.5X reduction in zero-load packet latency, and 1.7X increase in throughput. In addition,
compared with the state-of-the-art low-cost NoC design, the proposed approach achieves
7.7X reduction in power, 3.3X reduction in area, 1.3X reduction in zero-load packet
latency, and 1.6X increase in throughput. Moreover, the shrinking features sizes due to
technology innovation results in increasing link failure rates. For RL NoC this is a major
concern due to a large number of wires that RL NoC employs. To address a solution
to this problem, a fault tolerance technique for permanent link failures without using

redundant wires is introduced and this technique requires a minimal overhead to the
existing RL NoC. The performance of the technique after a fault recovery is extensively
assessed using synthetic traffic patterns and PARSEC workloads. On average, latency is
increased by 5.2% and 10.03% for synthetic patterns and PARSEC workloads, respec-
tively. Moreover, this technique requires only an additional 4% area and 20.3% of total
power.

©Copyright by Fawaz Alazemi
June 12, 2019

All Rights Reserved

Routerless Network-on-chip

by

Fawaz Alazemi

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 12, 2019
Commencement June 2019

Doctor of Philosophy dissertation of Fawaz Alazemi presented on June 12, 2019.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my dissertation to
any reader upon request.

Fawaz Alazemi, Author

ACKNOWLEDGEMENTS

I am extremely thankful to my advisors Prof. Bella Bose and Prof. Lizhong Chen for
their endless support, excellence mentorship, and inspiration through my doctoral degree
voyage. It was my honor to have them both as my advisors. I also would like to thank:

• my wife, Arwa, for her care, support, sacrifice through all the ups and downs in
this journey. Through the journey we were bless by two beautiful girls, Mariam
and Noura, which brought to us a lot of joy and funny moments. Without their
understanding and encouragement this journey would not finish.

• all my colleges in the STAR lab Ryan Gambord, Yongbin Gu, Yunfan Li, Arash
Azizi Mazreah, Drew Penney, and Aashish Adhikari.

• my parents, Mohammed and Saud, and my brothers Hamid, Jaber, and Abdulrah-
man and my sisters Afrah, Abrar, and Rawan.

• my Ph.d committee Prof. Ben Lee, Prof. Rakesh Bobba, and William H. Warnes.

• Prof. Ziad Najem for being a role model.

• Prof. Mehmet Karaata for all the pleasent night we spent in Shaiwkh campus.

• Kuwait University for the generaous scholarship.

• Oregon State University for offering an excellent academic environment.

• all my friends in Kelly and Corvallis.

From the bottom of my heart, Thank you.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Background and Motivation . 3
1.1.1 Related Work . 3
1.1.2 Need for New Routerless NoC Designs 9

1.2 Analysis on Wiring Resources . 12
1.2.1 Metal Layers . 12
1.2.2 Wiring in NoC . 13
1.2.3 Usable Wires for NoCs . 15

1.3 NoC Simulators . 17

2 Routerless network-on-chip design 22

2.1 Designing Routerless NoCs . 22
2.1.1 Basic Idea . 22
2.1.2 Examples . 29
2.1.3 Formal Procedure . 31

2.2 Implementation Details . 35
2.2.1 Injection Process . 35
2.2.2 Ejection Process . 38
2.2.3 Avoiding Network Abnormalities 39

2.3 Deadlock Avoidance . 40
2.3.1 Interface Hardware Implementation 42

2.4 Evaluation methodology . 44

2.5 Results and Analysis . 48
2.5.1 Ejection Links and Extension Buffers 48
2.5.2 Synthetic Workloads . 51
2.5.3 PARSEC and SPLASH-2 Workloads 51
2.5.4 Power . 53
2.5.5 Area . 54

2.6 Discussion . 58
2.6.1 Scalability and Regularity . 58
2.6.2 Average Overlapping . 58
2.6.3 Impact on Latency distribution 59
2.6.4 RL for n×m Chip . 60

2.7 Highlights on implementing Routerless in Booksim 61
2.7.1 How Booksim works . 61

TABLE OF CONTENTS (Continued)
Page

2.7.2 Routerless implementation . 65

2.8 Conclusion . 73

3 Reliability of Routerless NoC 74

3.1 Faults in Networks-on-Chip . 74
3.1.1 Motivation . 81

3.2 Addressing reliability in RL NoC . 82
3.2.1 A fault example in RL . 85
3.2.2 Fault detection and switches 90

3.3 Evaluation and results . 91
3.3.1 Evaluation methodology . 91

3.4 Results and Analysis . 92
3.4.1 Synthetic workloads . 92
3.4.2 PARSEC Workloads . 94
3.4.3 PARSEC traces . 96
3.4.4 Power and area analysis . 96

3.5 Discussion . 98
3.5.1 Multiple faults in NoCs . 98

3.6 Highlight on implementing RL in Gem5 101

3.7 Conclusion . 101

4 Conclusion and future work 103

4.1 Future work . 104
4.1.1 Routerless tiles . 104
4.1.2 Optimal width of a link . 104
4.1.3 Use AI to find better set of loops 105
4.1.4 Application mapping for RL networks 105
4.1.5 Multicast and broadcast . 105

Bibliography 105

Appendices 110

Patent . 111

Routerless Network-on-chip HPCA 2018 . 146

TABLE OF CONTENTS (Continued)
Page

Routerless loops for 4× 4 . 158

Routerless loops for 8× 8 . 159

Routerless loops for 16× 16 . 161

Topology script for Routerless in Gem5 . 170

LIST OF FIGURES
Figure Page

1.1 An example of loops in a 4×4 grid. 6

1.2 A long wire in NoCs with repeaters. 7

2.1 Layers of an 8×8 grid. 23

2.2 Loops in L1, and M2 = L1. 24

2.3 Loops in Layer 2 (L2). M4 = L2∪L1. 24

2.4 Loops in L3. M6 = L3∪L2∪L1. 26

2.5 Loops in L4. M8 = L4∪L3∪L2∪L1. 28

2.6 Routerless interface components. 33

2.7 Injecting a long packet requires a packet-sized buffer per loop at each
hop in prior implementation (X, Y and Z are interfaces). 34

2.8 Throughput of routerless NoC under different number of ejection links
and extension buffers (EXBs). 46

2.9 Performance comparison for synthetic traffic patterns. 47

2.10 PARSEC and SPLASH-2 benchmark performance results (y-axis rep-
resents average pack latency in cycles.) RL is compared with different
Mesh configurations, EVC, and IMR in (a), (b) and (c). In (d), RL is also
compared with a 3D Cube. 50

2.11 Breakdown of power consumption for different PARSEC and SPLASH-2
workloads (normalized to Mesh). 52

2.12 Area comparison under 15nm technology. 56

2.13 Average hop count for synthetic workloads. 57

2.14 Latency distribution of benchmarks for RL 8×8 NoC. 59

2.15 Call hierarchy for TimedModule objects in every clock cycle 63

2.16 Router’s pipline implemented by Evaluate() in Booksim 64

LIST OF FIGURES (Continued)
Figure Page

3.1 RL Algorithm grows the network in concentric layers 76

3.2 Layer 1 (2x2) contains two counter-rotating loops 77

3.3 Layer 2 (4x4) loops provide connectivity to new outer nodes 77

3.4 Layer 3 (6x6) loops showing alternating direction of column loops . . . 78

3.5 Percentage of node pairs that share a single loop 79

3.6 Only one loop shared between gray nodes and the black node 80

3.7 Passive links offer redundancy in the event of link failure 83

3.8 Supplemental short loops deactivate and provide donor links to bypass
failed links in RL loops . 83

3.9 Proposed auxiliary’s Hamiltonian loop to provide redundancy in the
event of loop failure . 84

3.10 Only one loop shared between gray nodes and the black node 87

3.11 Two loops are joined into one after detecting a faulty link 88

3.12 High level BIST design to detect faults in links. 90

3.13 Average latency of traffic patterns at injection rate 0.005. 93

3.14 Average hop count prior to fault vs. after a fault. Average hop count
depends on fault location expected and worst case average hop count are
shown. 94

3.15 Percentage of execution time change with and without a fault 94

3.16 Expected average hop count for 8×8 RL 95

3.17 Average latency of PARSEC workloads with and without a fault 95

3.18 Breakdown of power consumption for PARSEC workloads 98

3.19 Fusing two loops more than once will result into disconnected loops. . 99

3.20 Example of ten faults in 4x4 NoC . 100

LIST OF TABLES
Table Page

1.1 Number of unidirectional loops in n×n grid [3]. 5

1.2 Wiring resources in a many-core processor chip. 8

1.3 Major features of Gem5 simulator [2] 18

2.1 Average overlapping and loops/rings in RL/IMR 59

2.2 Loops for 4×4 NoC . 72

3.1 Key configuration parameters of simulation 91

xiv

List of Algorithms

1 RLrec . 32
2 Evaluation . 66
3 Input Queuing . 66
4 Ejection Module . 67
5 Input Module . 68
6 Injection Module . 69
7 Route Traffic Module . 70
8 Reset Flags Module . 71

Chapter 1: Introduction

As technologies continue to advance, tens of processing cores on a single chip-multiprocessor

(CMP) has already been commercially offered. Intel Xeon Phi Knight Landing [16] is an

example of a single CMP that has 72 cores. With hundreds of cores in a CMP around the

corner, there is a pressing need to provide efficient networks-on-chip (NoCs) to connect

the cores. In particular, recent chips have exhibited the trend to use many but simple

cores (especially for special-purpose many-core accelerators), as opposed to a few but

large cores, for better power efficiency. Thus, it is imperative to design highly scalable

and ultra-low cost NoCs that can match with many simple cores.

Prior to NoCs, buses have been used to provide on-chip interconnects for multi-core

chips [10, 11, 18, 22, 43, 44]. While many techniques have been proposed to improve

traditional buses, it is hard for their scalability to keep up with modern many-core

processors. In contrast, NoCs offer a decentralized solution by the use of routers and

links. Thanks to the switching capability of routers to provide multiple paths and parallel

communications, the throughput of NoCs is significantly higher than that of buses.

Unfortunately, routers have been notorious for consuming a substantial percentage of

chip’s power and area [25, 26]. Moreover, the cost of routers increases rapidly as link

width increases. Thus, except for a few ad hoc designs, most on-chip networks do not

employ link width higher than 256-bit or 512-bit, even though additional wiring resources

may be available. In fact, our study shows that, a 6x6 256-bit Mesh only uses 3% of the

2

total available wiring resources (more details in Section 1.2).

The high overhead of routers motivates researchers to develop routerless NoCs that

eliminate the costly routers but use wires more efficiently to achieve scalable performance.

While the notion of routerless NoC has not been formally mentioned before, prior research

has tried to remove routers with sophisticated use of buses and switches, although with

varying success. The goal of routerless NoCs is to select a set of smartly placed loops

(composed of wires) to connect cores such that the average hop count is comparable to

that of conventional router-based NoCs. However, the main roadblocks are the enormous

design space of loop selection and the difficulty in avoiding deadlock with little or no

use of buffer resources (otherwise, large buffers would defeat the purpose of having

routerless NoCs).

In this thesis, we explore efficient design and implementation to materialize the

promising benefits of routerless NoCs. Specifically, we propose a layered progressive

method that is able to find a set of loops meeting the requirement of connectivity and the

limitation of wiring resources. The method progressively constructs the design of a large

routerless network from good designs of smaller networks, and is applicable to any n×m

many-core chips with superior scalability. Moreover, we propose several novel techniques

to address the challenges in designing routerless interface to avoid network abnormalities

such as deadlock, livelock and starvation. These techniques result in markedly reduced

buffer requirement and injection/ejection hardware overhead. In addition, compared

with a conventional router-based Mesh, the proposed routerless design achieves 9.48X

reduction in power, 7.2X reduction in area, 2.5X reduction in zero-load packet latency,

and 1.73X increase in throughput. In addition, compared with the current state-of-the-art

3

scheme that tries to replace routers with less costly structures (IMR [33]), the proposed

scheme achieves 7.75X reduction in power, 3.32X reduction in area,1.26X reduction in

zero-load packet latency, and 1.6X increase in throughput.

The rest of the paper is organized as follows. In Sections 2, we provide background

on wiring resource and discuss the related work. Section 3 illustrates the concept of

routerless NoCs and the associated design challenges. In Section 4, we explain the details

of a routerless NoC design followed by implementation details in Section 5. Section

6 describes the evaluation methodology and Section 7 presents the evaluation results.

Finally, some further discussion is provided in Section 8, and Sections 9 concludes the

paper.

1.1 Background and Motivation

1.1.1 Related Work

Prior work on on-chip interconnects can be classified into bus-based and network-based.

The latter can be further categorized as router-based NoCs and routerless NoCs. The

main difference between bus-based interconnects and routerless NoCs is that bus-based

interconnects use buses in a direct, simple and primitive way, whereas routerless NoCs

use a network of buses in a sophisticated way and typically need some sort of switching

that earlier bus systems do not need. Each of the three categories is discussed in more

detail below.

Bus-based Interconnects are centralized communication systems that are straight-

4

forward and cheap to implement. While buses work very well for a few cores, the overall

performance degrades significantly as more cores are connected to the bus [22, 43]. The

two main reasons for such degradation are the length of the bus and its capacitive load.

Rings [10, 11, 18] can also be considered as variants of bus-based systems where all the

cores are attached to a single bus/ring. IBM Cell processor [44] is an improved bus-based

system which incorporates a number of bus optimization techniques in a single chip.

Despite having a better performance over conventional bus/ring implementations, IBM

Cell process still suffers from serious scalability issues [6].

Router-based NoCs are decentralized communication systems. A great deal of

research has gone into this (e.g., [14, 17, 23, 28, 30, 31, 36, 38], too many to cite all here).

The switching capability of routers provides multiple paths and parallel communications

to improve throughput, but the overhead of routers is also quite substantial. Bufferless

NoC (e.g., [20]) is a recent interesting line of work. In this approach, buffer resources

in a router are reduced to the minimal possible size (i.e. one flit buffer per input port).

Although bufferless NoC is a clever approach to reduce area and power overhead, the

router still has other expensive components that are eliminated in the routerless approach

(Section 2.5.5 compares the hardware cost).

Routerless NoCs aim to eliminate the costly routers while having scalable perfor-

mance. While the notion of routerless NoC has not been formally mentioned before,

there are several works that try to remove routers with sophisticated use of buses and

switches. However, as discussed below, the hardware overhead in these works is quite

high, some requiring comparable buffer resources as that of conventional routers, thus

not truly materializing the benefits of routerless NoCs. One approach is presented in [40],

5

where the NoC is divided into segments. Each segment is a bus, and all the segments

are connected by a central bus. Segments and central bus are linked by a switching

element. In large NoCs, either the segments or the central bus may suffer from scalability

issues due to their bus-based nature. A potential solution is to increase the number of

wires in the central bus and the number of cores in a segment. However, for NoCs larger

than 8×8, it would be challenging to find the best size for the segments and central bus

without affecting scalability. Hierarchical rings (HR) [21] has a similar design approach

as that of [40]. The NoC is divided into disjoint sets of cores, and each set is connected

by a ring. Such rings are called local rings. Additionally, a set of global rings bring

together the local rings. Packets switch between local and global rings through a low-cost

switching element. Although the design has many nice features, the number of switching

element is still not small. For example, for an 8×8 NoC, there are 40 switching elements,

and this number is close to the number of routers in the 8× 8 network. Recently, a

multi-ring-based NoC called isolated multiple rings (IMR) is proposed in [33] and has

been shown to be superior than the above Hierarchical rings. To our knowledge, this is

the latest and best scheme so far along the line of work on removing routers. While the

proposed concept is promising, the specific IMR design has several major issues and the

results are far from optimal, as discussed in the next subsection.

Table 1.1: Number of unidirectional loops in n×n grid [3].

n # of loops n # of loops
1 0 2 2
3 26 4 426
5 18,698 6 2,444,726
7 974,300,742 8 1,207,683,297,862

6

(b)(a)

Figure 1.1: An example of loops in a 4×4 grid.

7

Figure 1.2: A long wire in NoCs with repeaters.

8

Table 1.2: Wiring resources in a many-core processor chip.

Many Core
Processor

Xeon Phi,
Knights Landing

Number of Cores 72
NoC Size 6×6

Die Area (31.9mm x 21.4mm)
683 mm2 [4]

Technology FinFET 14nm
Interconnect 13 Metal Layers

Inter-core Metal
Layers

Metal
Layer

Pitch [27] [35]

M4 80nm
M5 104nm

9

1.1.2 Need for New Routerless NoC Designs

1.1.2.1 Principles and Challenges

We use Figure 1.1 to explain the basic principles of routerless NoCs. This figure depicts

an example of a 16-core chip. The 4×4 layout specifies only the positions of the cores,

not any topology. A straightforward but naive way to achieve routerless NoC is to use a

long loop (e.g., a Hamiltonian cycle) that connects every node on the chip as shown in

Figure 1.1(a). Each node injects packets to the loop and receives packets from the loop

through a simple interface (referred to as RL interface hereafter). Apparently, even if a

flit on the loop can be forwarded to the next node at the speed of one hop per cycle, this

design would still be very slow because of the average O(n2) hop count, assuming an

n×n many-core chip. Scalability is poor in this case, as the conventional topology such

as Mesh has an average hop count of O(n).

To reduce the hop count, we need to select a better set of loops to connect the nodes,

while guaranteeing that every pair of nodes is connected by at least one loop (so that

a node can reach another node directly in one loop). Figure 1.1(b) shows an example

with the use of three loops, and this technique satisfies the connectivity requirement

and reduces the all-pair average hop count by 46% compared to the technique shown

in Figure 1.1 (a). Note that, when injecting a packet, a source node chooses a loop that

connects to the destination node. Once the packet is injected into a loop, it stays on this

loop and travels at the speed of one hop per cycle all the way to the destination node.

No changing loops is needed at RL interfaces, thus avoiding the complex switching

hardware and per-hop contention that may occur in the conventional router-based on-chip

10

networks.

Several key questions can be asked immediately. Is the design in Figure 1.1(b)

optimal? Is it possible to select loops that achieve comparable hop count as conventional

NoCs such as Mesh? Is there a generalized method that we can use to find the loops for

any n×n network? How can this be done without exceeding the available on-chip wiring

resources? Unfortunately, answering these questions is extremely challenging due to

the enormous design space. We calculated the number of possible loops for n×n chips

based on the method used in [3], where a loop can be any unidirectional circular path

with the length between 4 and n. Table 1.1 lists the results up to n = 8. As can be seen,

the number of possible loops grows extremely rapidly. To overcome this problem, we

had to choose a subset of loops such that there is at least one loop connecting any part of

nodes.

Meanwhile, any selected final set of loops needs to comfortably fit in the available

wiring resources on the chip. Specifically, when loops are superpositioned, the number

of overlapped loops between any neighboring node pairs should not exceed a limit. In

what follows, we use overlapping to refer to the number of overlapped loops between

two neighboring nodes (e.g., in Figure 1.1(b) some neighboring nodes have two loops

passing through them while others have only one loop passing), and use overlapping cap

to refer to the limit of the overlapping. Note that the cap should be much lower than the

theoretical wiring resources on chip due to various practical considerations (analyzed

in Section 1.2). As an example, if the overlapping cap is 1, then Figure 1.1(a) has to

be the final set. If the overlapping cap increases to 2, it provides more opportunity for

improvement, e.g., the better solution in Figure 1.1(b). The overlapping cap is a hard limit

11

and should not be violated. However, as long as this cap is met, it is actually beneficial to

approach this cap for as many neighboring node pairs as possible. Doing this indicates

that more wires are being utilized to connect nodes and the hop count is reduced.

1.1.2.2 Major Issues in Current State-of-the-Art

There are several major issues that must be addressed in order to achieve effective

routerless NoCs. We use IMR [33] as an example to highlight these issues. IMR is

a state-of-the-art design that follows the above principle to deploy a set of rings such

that each ring joins a subset of cores. While IMR has been shown to outperform other

schemes with or without the use of routers, the fundamental issues in IMR prevent it

from realizing the true potential of routerless NoCs. This calls for substantial research on

this topic to develop more efficient routerless designs and implementations.

(1) Large overlapping. For example, IMR uses a large number of superpositioned rings

(equivalent to the above-defined overlapping cap of 16) without analyzing the actual

availability of wiring resources on-chip.

(2) Extremely slow search. A genetic algorithm is used in IMR to search the design space.

This general-purpose search algorithm is very slow (taking several hours to generate

results for 16×16, and is not able to produce good results in a reasonable time for larger

networks). Moreover, the design generated by the algorithm is far from optimal with

high hop counts, as evaluated in Section 2.4. Thus, efforts are much needed to utilize

clever heuristics to speed up the process.

(3) High buffer requirement. Currently, the network interface of IMR needs one packet-

12

sized buffer per ring to avoid deadlock. Given that up to 16 rings can pass through an

IMR interface, the total number of buffers at each interface is very close to a conventional

router.

The above issues are addressed in the next three sections. Section 1.2 analyzes the

main contributing factors that determine the wiring availability in practice, and estimates

reasonable overlapping caps using a contemporary many-core processor. Section 2.1

proposes a layered progressive approach to select a set of loops, which is able to generate

highly scalable routerless NoC designs in less than a second (up to 128×128). Section

2.2 presents our implementation of routerless interface. This includes a technique that

requires only one flit-sized buffer per loop (as opposed to one packet-sized buffer per

loop). This technique alone can save buffer area by multiple times.

1.2 Analysis on Wiring Resources

1.2.1 Metal Layers

As technology scales to smaller dimensions, it provides a higher level of integration.

With this trend, each technology comes with an increasing number of routing metal

layers to meet the growing demand for higher integration. For example, Intel Xeon Phi

(Knights Landing) [1] and KiloCore [13] are fabricated in the process technology with

11 and 13 metal layers, respectively. Each metal layer has a pitch size which defines the

minimum wire width and the space between two adjacent wires. The physical difference

between metal layers results in various electrical characteristics. This allows designers

13

to meet their design constraints such as delay on the critical nets by switching between

different layers. Typically, lower metal layers have narrower width and are used for local

interconnects (e.g., within a circuit block); higher metal layers have wider width and are

used for global interconnects (e.g., power supply, clock); middle metal layers are used

for semi-global interconnects (e.g., connecting neighboring cores). Table 1.2 lists several

key physical parameters of Xeon Phi including the middle layers that can be used for

on-chip networks.

1.2.2 Wiring in NoC

To estimate the actual wiring resources that can used for routing, several important issues

should be considered when placing wires on the metal layers.

Routing strategy: In general, two approaches can be considered for routing inter-

connects over cores in NoCs. In the first approach, dedicated routing channels are used

to route wires in NoCs. This method of routing was widely used in earlier technology

nodes where only three metal layers were typically provided [42], and it has around

20% area overhead. In the second approach, wires are routed over the cores at different

metal layers [37]. In the modern technology nodes with six to thirteen metal layers, this

approach of routing over logic becomes more common for higher integration. This can

be done in two ways: 1) several metal layers are dedicated for routing wires, and 2) a

fraction of each metal layer is used to route the wires. The first way is preferable given

that many metal layers are available in advanced technology nodes [37, 42].

14

Repeater: Wires have parasitic resistance and capacitance which increase with the

length of wires. To meet a specific target frequency, a long wire needs to be split into

several segments, and repeaters (inverters) are inserted between the segments, as shown

in Figure 1.2. The size of repeaters should be considered in estimating the available

wiring resources. For a long wire in the NoC, the size of each repeater (h times of an

inverter with minimum size) is usually not small, but the number of repeaters (k) needed

is small [32]. In fact, it has been shown that increasing k has negligible improvement in

reducing the delay [32]. For a 2GHz operating frequency, using only one repeater with

the size of 40 times W/L of the minimum sized inverter can support a wire length of

2mm [37], which is longer than the typical distance between two cores in a many-core

processor [41].

Coping with cross-talk: Cross-talk noises can occur either between the wires on

the same metal layer or between the wires on different metal layers, both of which may

affect the number of wires that can be placed. The impact of cross-talk noises on voltage

can be calculated by Equation (1) as the voltage changes on a floated victim wire [24].

∆Vvictim =
Cad j

Cvictim +Cad j
×∆Vaggressor (1.1)

where ∆Vvictim is the voltage variation on the victim wire, ∆Vaggressor is the voltage

variation on the aggressor, Cvictim is the total capacitance (including load capacitance)

of the victim wire, and Cad j is the coupling capacitance between the aggressor and the

victim. It can be observed from Equation (1) that the impact of cross-talk on the victim

wire depends on the ratio of Cad j to Cvictim. Hence, the cross-talk on the same layer

15

has much larger impact on the power, performance, and functionality of the NoC since

the adjacent wires which run in parallel on the same metal layer has larger coupling

capacitance (Cad j) [24]. There are two major techniques to mitigate cross-talk noises,

shielding and spacing. In the shielding approach, crosstalk noises are largely avoided

between two adjacent wires by inserting another wire (which is usually connected to the

ground or supply voltage) between them. In the spacing approach, adjacent wires are

separated by a certain distance that would keep the coupling noise below a level tolerable

by the target process and application. Compared with spacing, shielding is much more

effective as it can almost remove crosstalk noises [8]. However, shielding also incurs

more area overhead as the distance used in the spacing approach is usually smaller than

that of inserting a wire.

1.2.3 Usable Wires for NoCs

To gain more insight on how many wiring resources are usable for on-chip networks

under current manufacturing technologies, we estimated the number of usable wires

by taking into account the above factors. The estimation is based on using two metal

layers to route wires over the cores. The area overhead of the repeater insertion including

the via contacts and the area occupation of the repeaters are considered based on the

layout design rules of each metal layer. We used the conservative way of shielding to

reduce crosstalk noises (and the inserted wires are not counted towards usable wires),

although spacing may likely offer more usable wires. In addition, in practice, 20%

to 30% of each dedicated metal layer for routing wires over the cores is used for I/O

16

signals, power, and ground connections [37]. This overhead is also accounted for. The

maximum values of h and k are used for worst-case estimation. As such, the above

method gives a very conservative estimation of the usable wires. Assuming that there is a

chip with similar physical configuration as Table 1.2, the two metal layers M4 and M5

under 14nm technology can provide 101,520 wires in the cross-section. This translates

into 793 unidirectional links of 128-bit, or 396 unidirectional links of 256-bit, or 198

unidirectional links of 512-bit in the cross-section. In contrast, a 6×6 mesh only uses

12 unidirectional 256-bit links in the bisection, which is about 3% of the usable wires.

It is important to note that the conventional router-based NoCs do not use very wide

links for good reasons. For instance, router complexity (e.g., the number of crosspoints

in switches, the size of buffers) increases rapidly as the link width increases. Also,

although wider links provide higher throughput, it is difficult to capitalize on wider links

for lower latency. The reduction in serialization latency by using wider links quickly

becomes insignificant as link width approaches the packet size. This motivates the need

for designing routerless NoCs where wiring resources can be used more efficiently.

The above estimation of the number of usable wires helps to decide the overlapping

cap mentioned previously. To avoid taxing too much on the usable wiring resources and

to have a scalable design, we propose to use an overlapping cap of n for n×n chips. In

the above 6×6 case, this translates into 4.5% of the usable wires for 128-bit loop width,

or 9.1% for 256-bit loop width. This parameterized overlapping cap helps to provide the

number of loops that is proportional to chip size, so the quality of the routerless designs

can be consistent for larger chips.

17

1.3 NoC Simulators

Computer architecture simulators are key players in the advancements of computer

architecture research. Computer architects use simulators to construct prototypes of their

ideas for testing and verifications purposes, to avoid huge costs associated with building

real systems, and as a performance evaluation methodology. Gem5 [12] is well-known

open-source simulator among computer architects which is the result of merging M5

and GEMS simulators. The project of Gem5 is emanated from efforts generated by

various major companies such as HP, MIPS, ARM and top academic institutions such

as Princeton, MIT, Wisconsin, Michigan Ann Arbor, and Texas Austin. Gem5 is still

backed up by major companies (ARM, Hewlett-Packard, Intel, AMD, and Microsoft.)

Gem5 has a modular platform and includes system-level architecture as well as

processor microarchitecture. In addition, it is flexible and capable of evaluating a wide

variety of components. For example:

1. Gem5 supports four different CPU models (single CPI in-order, out-of-order,

KVM) where each exists in a different point of speed-vs-accuracy spectrum

2. support multiple ISA model (Alpha, ARM, SPARC, MIPS, POWER, RISC-V and

x86)

3. System-call Emulation mode and full-system mode capabilities

4. GPU integrations

5. Power and energy models

18

Table 1.3: Major features of Gem5 simulator [2]

1 Feature Description
2 Multiple interchangeable

CPU models.
Simple one-CPI, in-order, out-of-order
(O3), and KVM-based CPU.

3 GPU integration model Run actual ISA and share virtual memory
with the host CPU.

4 NoMali GPU model NoMali GPU model is integrated in Gem5
which is compatible with Linux and An-
droid GPU driver stack.

5 Event-driven memory system Support of caches, crossbars, snoop filters,
and a fast and accurate DRAM controller
model.

6 A trace-based CPU model Timing annotated traces for memory-
system throughput analysis.

7 Homogeneous and heteroge-
neous multi-core

Arbitrary topologies for CPU models and
caches coherence protocols.

8 Multiple ISA support Supports for Alpha, ARM, SPARC, MIPS,
POWER, RISC-V and x86 ISAs.

9 Full-system capability Support for full system simulation for
major CPUs including ALPHA, ARM,
SPARC, and x86.

10 Multi-system capability Gem5 can simulate multple systems in a
single simulation process.

11 Power and energy modeling Support for OS-controller Dynamic Volt-
age and Frequency (DVFS) scaling.

12 Co-simulation with SystemC with SystemC support, Gem5 can run as
single thread in SystemC simulation to in-
teroperate SoC component models, such
as interconnects, devices, and accelerators.

19

Table 1.3 list all main features provided by Gem5 according to [2].

Gem5 has several design features and behaviors. The features include python inte-

gration, utilization of standard interface, pervasive object orientation design, and use of

domain-specific languages whereas the behaviors include check-pointing/serialization,

initialization, configuration, and statistics-based behaviors for each SimObject in Gem5.

Despite a majority of gem5 being written in C++, the role of Python in the initialization,

configuration, and simulation control. The pervasive object-oriented design focusses

on the aspect of flexibility that is established through creating independent objects in

which their integration lead to multi-system and multi-core modeling. DSLs (Domain

Specific Languages) offers a powerful way of expressing several solutions. This design

feature also offers idioms and knowledge that are relevant to the concerned problem space.

Two types of DSLs are used in this case (Cache Coherence DSL and the ISA DSL.)

Another important design feature is the Standard Interfaces which are fundamentals

to the object-oriented design. These features closely work together with the Domain

Specific Languages. Two central interfaces are referred to in this case, that is the port

interface and the message buffer interface. One of port interface uses is to connect the

memory objects in Gem5. That is, connecting CPUs and caches, Caches to busses, and

busses to memories and devices as well. Another usage of the port interfaces is to access

data (timing, atomic, and functional), feed Gem5 with interconnection topology, and

debugging.

As network-on-chip (NoC) architectures become important in microprocessor devel-

opment and the number of cores and modules on a single chip multiply, the support of a

NoC module become vital for any simulator. GARNET [5] is a detailed cycle-accurate

20

network simulator that was incorporated into the Gem5 simulator and is also available as

a standalone network simulator. GARNET is implemented as an event-driven simulator

that can model NoCs in detail up to the microarchitecture level. It also offers a five-stage

classical pipelined router by default under the virtual channel flow control mechanism.

Booksim [29] is another stand-alone NoC simulator which is cycle-accurate and modular,

and also offers a large set of configuration parameters. Booksim better match RTL model

of a canonical NoC router than GARNET. In general, the accuracy and speed of execution

are two conflicting parameters and this is true for Booksim.

Any NoC simulator must support at least router pipeline, routing implementation,

the flow control, saturation throughput, and custom topology. Router pipeline along

with routing algorithm and flow control defines the router microarchitecture. Saturation

throughput is used to measure the performance of the network at high level injection rates.

Another metrics commonly used in measuring network performance in zero-load latency

which is used as a lower bound when it comes to network latency. The two metrics are

either obtained from drawn latency versus throughput curves or analytically estimated.

Topology is another key element in network simulators. It imposes bisection bandwidth,

latency bound, and initial throughput, which is governed by the bandwidth as measured

from the network diameter. The routing algorithm is also critical in this case as it defines

the communication within the network topology. It also offers various trade-offs on

achieving recommendable performance and other limitations as well. Routing algorithms

must be free of any network abnormalities such as deadlocks, starvation, and livelock.

In this thesis, we used Booksim and Gem5 to study RL design performance. Due to

the major differences between RL design and Router-based designs, we had to replace

21

router microarchtecture components, for Booksim and GARNET, with an implementation

that matches the interface of RL design

22

Chapter 2: Routerless network-on-chip design

2.1 Designing Routerless NoCs

2.1.1 Basic Idea

Our proposed routerless NoC design is based on what we call layered progressive

approach. The basic idea is to select the loop set in a progressive way where the design

of a large routerless network is built on top of the design of smaller networks. Each time

the network size increments, the newly selected loops are conceptually bundled as a layer

that is reused in the next network size.

23

Layer 4
Layer 3
Layer 2
Layer 1

Figure 2.1: Layers of an 8×8 grid.

24

Layer 1 = +
Figure 2.2: Loops in L1, and M2 = L1.

Layer 2 = + + + + + + +

D4C4B4
A4

Layer 2 = + + + + + + +

D4C4B4
A4

Layer 2 = + + + + + + +

D4C4B4
A4

Figure 2.3: Loops in Layer 2 (L2). M4 = L2∪L1.

25

Specifically, let Mk be the final set of selected loops for k× k grid (2≤ k ≤ n) that

meets the connectivity, overlapping and low hop count requirements. We construct

Mk+2 by combining Mk with a new set (i.e., layer) of smartly placed loops. The new

layer utilizes new wiring resources that are available when expanding from k× k to

(k+2)× (k+2). The resulting Mk+2 can also meet all the requirements and deliver

superior performance. For example, as shown in Figure 3.1, the grid is logically split

into multiple layers with increasing sizes. Let Lk be the set of loops selected for Layer k.

Firstly, suppose that we already find a good set of loops for 2×2 grid that connects all

the nodes with a low hop count and does not exceed an overlapping of 2 between any

neighboring nodes. That set of loops is M2, which is also L1 as this is the base case. Then

we find another set of loops L2, together with M2, can form a good set of loops for 4×4

grid (i.e., M4 = L2∪M2). The resulting M4 can connect all the nodes with a low hop

count and do not exceed an overlapping of 4 between any neighboring nodes. And so on

so forth, until reaching the targeted n×n grid. In general, we have Mn = Lbn/2c∪Mn−2 =

Lbn/2c∪Lbn/2c−2∪Mn−4 = . . .= Lbn/2c∪Lbn/2c−2∪Lbn/2c−4∪ . . .∪L1.

26

A6 B6

C6 D6
Figure 2.4: Loops in L3. M6 = L3∪L2∪L1.

27

Apparently, the key step in the above progressive process is how to select the set of

loops in Layer k, which enables the progression to the next sized grid with low hop count

and overlapping. In the next subsections, we walk through several examples to illustrate

how it is done to progress from 2×2 grid to 8×8 grid.

28

A8
B8

C8 D8

Figure 2.5: Loops in L4. M8 = L4∪L3∪L2∪L1.

29

2.1.2 Examples

2.1.2.1 2×2 Grid

This is the base case with one layer. There are exactly two possible loops, one in each

direction, in a 2× 2 grid. Both of them are included in M2 = L1, as shown in Figure

2.2. The resulting M2 satisfies the requirement that every source and destination pair is

connected by at least one loop. The maximum number of loops overlapping between any

neighboring nodes is 2, which meets the overlapping cap. This set of loops achieves a

very low all-pair average hop count of 1.333, which is as good as the Mesh.

2.1.2.2 4×4 Grid

M4 consists of loops from two layers. Based on our layered progressive approach, L1 is

from M2. We select 8 loops to form L2, as illustrated in Figure 2.3. The 8 loops fall into

four groups (from this network size and forward, each new layer is constructed using

four groups with the similar heuristics as discussed below). The first group, A4 (the

subscript indicates the size of the grid), has only one anti-clockwise loop. It provides

connectivity among the 12 new nodes when expanding from Layer 1 to Layer 2. The

loops in the second group, B4, have the first column as the common edge of the loops,

but the opposite edge of the loops moves gradually towards the right (this is more evident

in group B6 in Figure ??). Similarly, the third group, C4, uses the last column as the

common edge of the loops and gradually moves the opposite edge towards the left. It

can be verified that groups B4 and C4 provide connectivity between the 12 new nodes in

30

Layer 2 and the 4 nodes in Layer 1. Since the connectivity among the 4 inner nodes has

already been provided by L1, the connectivity requirement of 4×4 grid is met by having

L1, A4, B4 and C4. The fourth group, D4, offers additional “shortcuts” in the horizontal

dimension.

A very nice feature of the selected M4 is that the wiring resources are efficiently

utilized, as the overlapping between many neighboring node pairs is close to the overlap-

ping cap of 4. For example, for the first (or the last) column, each group of loops has

exactly one loops passing through that column, totaling an overlapping of 4, which is the

same as the cap. Thus, no overlapping “ration” is under-utilized. For the second column

(or the third) column, groups A4 and D4 have no loop passing through, and groups B4 and

C4 have two loops passing through in total. However, note that the final M4 also includes

L1 which has two loops passing through the second (or the third) column. Hence, the

total overlapping of the middle columns is also 4, exactly the same as the cap. Simple

counting can show that the overlapping on the horizontal dimension is also 4 for each

row. Owing to this efficient use of wiring resource “ration”, the all-pair average hop

count is 3.93 for the selected set of loops in M4. The final set is M4 = L2∪M2 = L2∪L1.

2.1.2.3 6×6 Grid

M6 consists of loops from three layers. L1 and L2 are from M4, and L3 is formed in

a similar fashion as 4× 4 grid from four groups, as illustrated in Figure ??. Again,

connectivity is provided by M4 and groups A to C. Together with group D, the number

of overlapping on each column and row is 6, thus fully utilizing the allocated wiring

31

resources.

Additionally, for the purpose of reducing hop count and balancing horizontal and

vertical wiring utilization, when we combine M4 and L3 to form M6, every loop in M4 is

reversed and then rotated 90◦ clockwise1. If this slightly changed M4 is denoted as M′4,

the final set can be expressed as M6 = L3∪M′4 = L3∪ (L2∪L1)
′, with an all-pair average

hop count of 6.07.

2.1.2.4 8×8 Grid

Similar to earlier examples, L4 consists of loops shown in Figure 2.5. The final set M8 is

M8 = L4∪M′6 = L4∪
(
L3∪ (L2∪L1)

′)′ with an all-pair average hop count of 8.32.

2.1.3 Formal Procedure

For an n× n grid, the loops for a routerless NoC design can be recursively found by

the procedure shown in Algorithm 1. The procedure is recursive and denoted as RLrec.

The procedure begins by generating loops for the outer layer, say layer i, and then it

recursively generates loops for layer i− 1 and so on until the base case is reached or

the layer has a single node or empty. Procedure G(r1,r2,c1,c2,d) is a simple function

that generates a rectangular shape loop with corners (r1,c1), (r1,c2), (r2,c1) and (r2,c2)

and direction d. When processing each layer in this algorithm, procedure G is called

repeatedly to generate four groups of loops. Additionally, the generated loops rotate 90

1In 4×4 grid, reversal and rotation of M2 is not necessary because M2 and M′2 have the same effect on
L1.

32

Algorithm 1: RLrec
Input :NL, NH ; the low and high numbers

1 begin
2 if NL = NH then
3 return {}
4 Let M = {}
5 if NH −NL = 1 then
6 M = M ∪ G(NL,NH ,NL,NH , clockwise)
7 M = M ∪ G(NL,NH ,NL,NH , anticlockwise)
8 return M

9 M = M ∪ G(NL,NH ,NL,NH , anticlockwise) // Group A
10 for i = NL +1→ NH −1 do
11 M = M ∪ G(NL,NH ,NL, i, clockwise) // Group B
12 M = M ∪ G(NL,NH , i,NH , clockwise) // Group C

13 for i = L→ H−1 do
14 M = M ∪ G(i, i+1,NL,NH , clockwise) // Group D

15 M′ = RLrec(NL+1, NH -1)
16 Reverse and rotate for 90◦ every loop in M′

17 return M∪M′

degrees and reverse directions after processing each layer to balance wiring utilization

and reduce hop count, respectively. The final loops generated by the RLrec algorithm

have an overlapping of at most n.

While it would be ideal if an analytical expression can be derived to calculate the

average hop count for this heuristic approach, this seems to be very challenging at the

moment. However, it is possible to calculate the average hop count numerically. This

result is presented in the evaluation, which shows that our proposed design is highly

scalable.

33

Injection  
Link

Ejection
Links

Loop 1

Loop m

Routing  
 Table

A
 p

oo
l o

f E
X

B
s

Link Selector  
 & arbitrator

Output 1

Output m

Single flit 
buffer

Single flit 
buffer EXB 1

EXB k

Figure 2.6: Routerless interface components.

34

! "

C
lo

ck
 c

yc
le

 i

In
je

ct
io

n
Q

Z
X

Y

C
lo

ck
 c

yc
le

 i+
1

In
je

ct
io

n
Q

Z
X

Y

C
lo

ck
 c

yc
le

 i+
2

In
je

ct
io

n
Q

Z
X

Y

C
lo

ck
 c

yc
le

 i+
3

In
je

ct
io

n
Q

Z
X

Y

"
$
%

! "
! %

! &

$

! %
! $

' "
"

%
$

! %
%

$
! "

! $
! "

! "

C
lo

ck
 c

yc
le

 i

In
je

ct
io

n
Q

Z
X

Y

C
lo

ck
 c

yc
le

 i+
1

In
je

ct
io

n
Q

Z
X

Y

C
lo

ck
 c

yc
le

 i+
2

In
je

ct
io

n
Q

Z
X

Y

C
lo

ck
 c

yc
le

 i+
3

In
je

ct
io

n
Q

Z
X

Y

"
$
%

! "
! %

! &

$

! %
! $

' "
"

%
$

! %
%

$
! "

! $
! "

Figure 2.7: Injecting a long packet requires a packet-sized buffer per loop at each hop in
prior implementation (X, Y and Z are interfaces).

35

2.2 Implementation Details

After addressing the key issue of finding a good set of loops, the next important task is to

efficiently implement the routerless NoC design in hardware. Because of the routerless

nature, no complex switching or virtual channel (VC) structure is needed at each hop, so

the hardware between nodes and loops has a small area footprint in general. However,

due to various potential network abnormalities such as deadlock, livelock, and starvation,

a certain number of resources are required to guarantee correctness. If not addressed

appropriately, this may cause substantial overhead that is comparable to router-based

NoCs. In this section, we propose a few effective techniques to minimize those overhead.

In a routerless NoC, each node uses an interface (RL interface) to interact with one or

multiple loops that pass through this node. Figure 2.6 shows the main components of a RL

interface. While details are explained in the following subsections, the essential function

of the interface includes injecting packets into a matching loop based on connectivity and

availability, forwarding packets to the next hop on the same loop, and ejecting packets

at the destination node. Notice that packets cannot switch loops once injected. All the

loops have the same width (e.g., 128-bit wires).

2.2.1 Injection Process

2.2.1.1 Extension Buffer Technique

A loop is basically a bundle of wires connected with flip-flops at each hop (Figure 2.6).

At clock cycle i, a flit arriving at the flip-flop of loop l must be consumed immediately by

36

either being ejected at this node or forwarded to the next hop on loop l through output l.

If no flit arrives at loop l (thus not using output l), the RL interface can inject a new flit

on loop l through output l. However, it is possible that an injecting packet consists of

multiple flits and requires several cycles to finish the injection, during which other flits

on loop l may arrive at this RL interface. Therefore, addition buffer resources are needed

to hold the incoming flits temporarily.

If routerless NoC uses the scheme proposed in prior ring-based work (e.g., IMR [33]),

a full packet-sized buffer per loop at each hop would be needed to ensure correctness,

which is very inefficient. As illustrated in Figure 2.7, a long packet B with multiple

flits is waiting for injection (there is no issue if it is a short single-flit packet). At clock

cycle i, the injection is allowed because packet B sees that no other flit in Interface Y is

competing with B for the output to Interface Z. From cycle i+1 to i+3, the flits of B

are injected sequentially. However, while packet B is being injected during these cycles,

another long packet A may arrive at Interface Y . Because RL interfaces do not employ

flow control to stop the upstream node, Interface Y needs to provide a packet-sized buffer

to temporarily store the entire packet A. A serious inefficiency lies in the fact that, if there

are m loops passing through a RL interface, the interface needs to have m packet-sized

buffers, one for each loop.

To address this inefficiency, we notice that an interface injects packets one at a time,

so not all the loops are affected simultaneously. Based on this observation, we propose

the extension buffer technique to share the packet-sized buffer among loops. As shown in

Figure 2.6, each loop has only a flit-sized buffer, but the interface has a pool of extension

buffers (EXBs). The size of each EXB is the size of a long packet, so when a loop is

37

“extended” with an EXB, it would be large enough to store a long packet. Minimally, only

one EXB is needed in the pool, but having multiple EXBs may have slight performance

improvement. This is because another injection might occur while the previous EXB is

not entirely released (drained) due to a previous injection (e.g., clock cycle i+3 in Figure

2.7). However, as shown later in the evaluation, the performance difference is negligible.

As a result, our proposed technique of using one shared EXB can essentially achieve the

same objective of ensuring correctness as IMR but reduces the buffer requirement by m

times. This is equivalent to an 8X saving in buffer resources in 8×8 networks and 16X

saving in 16×16 networks.

2.2.1.2 Injection Process

The injection process with the use of EXBs is straightforward. To inject a packet p of

n f flits, the first step is to look up a small routing table to see which loop can reach p’s

destination. The routing table is pre-computed since all the loops are pre-determined.

The packet p then waits for the loops to become available (i.e., having sufficient buffer

space). Assume l is a loop that has the shortest distance to the destination among all the

available loops. When the injection starts, the interface holds the output port of l for n f

cycles to inject p, and assigns a free EXB to l if n f > 1 and l is not already connected

to another EXB. During those n f cycles, any incoming flit through the input port of l

is enqueued in the extension buffer. The EXB is released later when its buffer slots are

drained.

38

2.2.2 Ejection Process

The ejection process starts as soon as the head flit of a packet p reaches the RL interface

of its destination node. The interface ejects p, one flit per cycle. Once p is ejected, the

interface will wait for another packet to eject. There is, however, a potential issue with

the ejection process. While unlikely, a RL interface with m loops may receive up to m

head flits simultaneously in a given cycle that are all destined to this node. Because any

incoming packets need to be consumed immediately and the packets are already at the

destination, the interface needs to have m ejection links in order to eject all the packets in

that cycle. As each eject link has the same width as the loop (i.e., 128-bit), this incurs

substantial hardware overhead.

To reduce this overhead, we utilize the fact that the actual probability of having k

packets (1 < k ≤ m) arriving at the same destination in the same cycle is low, and this

probability decreases drastically as k increases. Based on this observation, we propose

to optimize for the common case where only e ejection links are provided (e� m). If

more than e packets arrive at the same cycle, (k− e) packets are forwarded to the next

hop. Those deflected packets will continue on their respective loops and will circle back

to the destination later. As shown in the evaluation, having two ejection links can reduce

the percentage of circling packets to be below 1% on average (1.6% max) across the

benchmarks. This demonstrates that this is a viable and effective technique to reduce

overhead.

39

2.2.3 Avoiding Network Abnormalities

As network abnormalities are theoretically possible but practically unlikely scenarios, our

design philosophy is to place very relaxed conditions to trigger the handling procedures,

so as to minimize performance impact while guaranteeing correctness.

2.2.3.1 Livelock Avoidance

A livelock may occur if a packet circles indefinitely and never gets a chance to eject. We

address this issue by having a byte-long circling counter at each head flit with an initial

value of zero. Every time a packet reaches its destination interface and is forced to be

deflected, the counter is incremented by 1. If the circling counter of a packet p reaches

254 but none of the ejection link is available, the interface marks one of its ejection

links as reserved and then deflects p for the last time. The marked ejection link will not

eject any more packets after finishing the current one, until p circles back to the ejection

link (by then the marked ejection link will be available; otherwise there is a possible

protocol-level deadlock, discussed shortly). Once p is ejected, the interface will unmark

the ejection link for it to function normally. Due to the extremely low circling percentage

(maximum 3 times of circling for any packet in our simulations), this livelock avoidance

scheme has minimal performance impact.

40

2.3 Deadlock Avoidance

With no protocol-level dependence at injection/ejection endpoints, routing-induced dead-

lock is not possible in routerless NoCs as packets arriving at each hop are either ejected

or forwarded immediately. Hence, a packet can always reach its destination interface

without being blocked by other packets. The above livelock avoidance ensures that the

packet can be ejected within a limited number of circlings.

With more than one dependent packet types (or message classes), the marked ejection

link in the above livelock avoidance scheme may not be able to eject the current packet

(say a request packet) in the ejection queue, because the associated cache controller

cannot accept new packets from the ejection queue (i.e., input of the controller). This

may happen when the controller itself is waiting for packets (say a reply packet) in the

injection queue (i.e., output of the controller) to be injected into the network. A potential

protocol-level deadlock may occur if that reply packet cannot be injected, such as the

loop is full of request packets that are waiting to be ejected. If no dependency between

packets type (or message classes) exists or the system has only one message class, then

there is no possibilities for protocol-level deadlock to occur.

To avoid such protocol-level deadlock, the conventional approach is to have a separate

physical or virtual network for each dependent packet type. For example, in Mesh

network the NoC is duplicated for each message class for the purpose of avoiding

protocol-level deadlock. The overhead of this solution is extremely heavy on area and

power budgets and it becomes intolerable as the NoC scale to higher number of nodes.

While similar approach can be used for routerless NoCs, here we propose a less resource

41

demanding solution which a separate ejection link for each message class to each cache

controller. These ejection links work independently and simultaneously at any time for

each controller. In addition, packets belonging to different message classes will no longer

be mixed in the same ejection queue and according to the nature of RL design packets

constantly circulating in loop until it gets a chance for ejection, hence, the resource

dependency between requests and reply packets is broken.

2.3.0.1 Starvation Avoidance

The last corner case we address is starvation. With the previous livelock and deadlock

handling, if a packet is consumed at its destination RL interface, the interface can use the

free output to inject a new packet. However, it is possible that a particular interface X

is not the destination of any packets and there is always a flit passing through X every

single cycle. This never occurred in any of our experiments as it is practically impossible

that a cache bank is not accessed by any other cores. However, it is theoretically

possible and, when occurred, prevents X from injecting new packets. We propose the

following technique to avoid starvation for the completeness of the routerless NoC

design. If X cannot inject a packet after a certain number of clock cycles (a very long

period, e.g., hundreds of thousand of cycles or long enough to have negligible impact

on performance), X piggybacks the next passing head flit f with the ID of X. When f

is ejected at its destination interface Y, instead of injecting a new packet, Y injects a

single-flit no-payload dummy packet that is destined to X. When the dummy packet

arrives at X, X can now inject a new packet by using the free slot created by the dummy

42

packet. This breaks the starvation configuration.

2.3.1 Interface Hardware Implementation

Figure 2.6 depicts the main components of a RL interface. We have explained the

extension buffers (EXBs), single-flit buffers, routing table, and multiple ejection links

in the previous subsections. The arbitrator receives flits from input buffers and selects

up to e input loops for ejection based on the oldest first policy. The arbitrator contains a

small register that holds the arbitration results. The link status selector is a simple state

machine associated with the loops. It monitors the input loops and arbitration results, and

changes the state of the loops (e.g., ejection, stall in extension buffers, etc.) in the state

machine. There are several other minor logic blocks that are not shown in Figure 2.6 for

better clarity. Note that the RL interface does not use the information of neighboring

nodes, which differs from most conventional router-based NoCs that need credits or

on/off signals for handshaking.

To ensure the correctness of the proposed interface hardware, we implement the

design in RTL Verilog that includes all the detailed components. The Verilog implemen-

tation is verified in Modelsim, synthesized in Synopsys Design Compiler, and placed

and routed using Cadence Encounter tool. We use the latest 15nm process NanoGate

FreePDK 15 Cell Library [34] for more accurate evaluation. As a key result, the RL

interface is able to operate at up to 4.3GHz frequency while keeping the packet forward-

ing process in one clock cycle. This is fast enough to match up with most commercial

many-core processors. Injecting packets may take an additional cycle for table look-up.

43

In the main evaluation below, both the interfaces and cores are operating at 2GHz.

44

2.4 Evaluation methodology

We evaluate the proposed routerless NoC (RL) extensively against Mesh, EVC, and

IMR in Booksim [29]. For synthetic traffic workloads, we use uniform, transpose, bit

reverse, and hotspot (with 8 hotspots nodes). Booksim is warmed up for 10,000 clock

cycles and then collects performance statistics for another 100,000 cycles at various

injection rates. The injection rate starts at 0.005 flit/node/cycle and is incremented by

0.005 flit/node/cycle until the throughput is reached. Moreover, we integrate Booksim

with Synfull [9] for performance study of PARSEC [15] and SPLASH-2 [45] benchmarks.

Power and area studies are based on Verilog post-synthesis simulations, as described in

Section 2.3.1.

In the synthetic study, each router in Mesh is configured with relatively small buffer

resources, having 2 VCs per link and 3 flits per VC. The link width is set to 256-bit.

Also, the router is optimized with lookahead routing and speculative switch allocation

to reduce pipeline stages to 2 cycles per router and 1 cycle per link. EVC has the same

configuration as Mesh except for one extra VC that is required to enable express channels.

For IMR, the ring set is generated by the evolutionary approach described in [33]. To

allow a fair comparison with RL, the maximum number of overlapping cap, for both

RL and IMR, is set to n for n×n NoC. We also follow the original paper to faithfully

implement IMR’s network interface. Each input link in an IMR’s interface is attached

with a buffer of 5 flits and the link width is set to 128-bit (the same as the original paper).

In RL, loops are generated by RLrec algorithm and accordingly the routing table for each

node is calculated. Each interface is configured with two ejection links and each input

45

link has a flit-size buffer. Also, an EXB of 5 flits is implemented in each interface. The

link width is 128-bit (the same as IMR). In all the designs, packets are categorized into

data and control packets where each control packet has 8 bytes and each data packet has

72 bytes. Accordingly, data packets in Mesh, EVC, IMR, and RL are of 3, 3, 5 and 5 flits,

respectively, and the control packets are of a single flit.

For benchmark performance study, we also add 2D Mesh with various configurations

as well as a 3D Cube design into the comparison. RL has the same configuration as the

synthetic study. For 2D Mesh, we use 9 configurations, each having the configuration

M(x,y) where x ∈ {1,2,3} is the router delay and y ∈ {1,2,3} is the buffer size, i.e.,

routers with 1-cycle, 2-cycle and 3-cycle delay, and with 1-flit, 2-flit and 3-flit buffer size.

3D Cube is configured with 2 VCs per link, 3 flits per VC, and 2-cycle per hop latency.

46

0
0.
050.
1

0.
150.
2

0.
250.
3

(1
,1
)

(1
,2
)

(1
,3
)

(2
,1
)

(2
,2
)

(2
,3
)

(3
,1
)

(3
,2
)

(3
,3
)

(1
6,
16

)

Throughput	(flit/node/cycle)

(N
um

be
r	o

f	e
je
ct
or
s,	
Nu

m
be
r	o

f	E
XB

s)

Un
ifo
rm

Tr
an
sp
os
e

Ho
ts
po
t

Bi
t	r
ev
er
se

Figure 2.8: Throughput of routerless NoC under different number of ejection links and
extension buffers (EXBs).

47

M
es

h
EV

C
IM

R
R

L

515253545

0.
00

5
0.

06
0.

11
5

Average latency (cycle)

In
je

ct
io

n
ra

te
 (f

lits
/n

od
e/

cy
cle

)

Ho
ts

po
t

515253545

0.
00

5
0.

06
0.

11
5

0.
17

0.
22

5

Average latency (cycle)

In
je

ct
io

n
ra

te
 (f

lits
/n

od
e/

cy
cle

)

Bi
t r

ev
er

se
515253545

0.
00

5
0.

06
0.

11
5

0.
17

0.
22

5

Average latency (cycle)

In
je

ct
io

n
ra

te
 (f

lits
/n

od
e/

cy
cle

)

Tr
an

sp
os

e
515253545

0.
00

5
0.

06
0.

11
5

0.
17

0.
22

5

Average latency (cycle)

In
je

ct
io

n
ra

te
 (f

lits
/n

od
e/

cy
cle

)

Un
ifo

rm

M
es

h
EV

C
IM

R
R

L

515253545

0.
00

5
0.

06
0.

11
5

Average latency (cycle)

In
je

ct
io

n
ra

te
 (f

lits
/n

od
e/

cy
cle

)

Ho
ts

po
t

515253545

0.
00

5
0.

06
0.

11
5

0.
17

0.
22

5

Average latency (cycle)

In
je

ct
io

n
ra

te
 (f

lits
/n

od
e/

cy
cle

)

Bi
t r

ev
er

se
515253545

0.
00

5
0.

06
0.

11
5

0.
17

0.
22

5

Average latency (cycle)

In
je

ct
io

n
ra

te
 (f

lits
/n

od
e/

cy
cle

)

Tr
an

sp
os

e
515253545

0.
00

5
0.

06
0.

11
5

0.
17

0.
22

5

Average latency (cycle)

In
je

ct
io

n
ra

te
 (f

lits
/n

od
e/

cy
cle

)

Un
ifo

rm

M
es

h
EV

C
IM

R
R

L

515253545

0.
00

5
0.

06
0.

11
5

Average latency (cycle)

In
je

ct
io

n
ra

te
 (f

lits
/n

od
e/

cy
cle

)

Ho
ts

po
t

515253545

0.
00

5
0.

06
0.

11
5

0.
17

0.
22

5

Average latency (cycle)

In
je

ct
io

n
ra

te
 (f

lits
/n

od
e/

cy
cle

)

Bi
t r

ev
er

se
515253545

0.
00

5
0.

06
0.

11
5

0.
17

0.
22

5

Average latency (cycle)

In
je

ct
io

n
ra

te
 (f

lits
/n

od
e/

cy
cle

)

Tr
an

sp
os

e
515253545

0.
00

5
0.

06
0.

11
5

0.
17

0.
22

5

Average latency (cycle)

In
je

ct
io

n
ra

te
 (f

lits
/n

od
e/

cy
cle

)

Un
ifo

rmFigure 2.9: Performance comparison for synthetic traffic patterns.

48

2.5 Results and Analysis

2.5.1 Ejection Links and Extension Buffers

The proposed RL scheme is flexible to use any number of ejection links and EXBs. On

the ejection side, the advantages of having more ejection links are higher chance for

packet ejection and lower chance for packet circling in a loop. However, adding more

ejection links complicates the design of the interface and leads to additional power and

area overhead in the interface and the receiving node. On the injection side, EXBs have a

direct effect on the injection latency of long packets. Recall that, a loop must be already

attached with an EXB or a free EXB is available to be able to inject a long packet. Similar

to ejection links, having more EXBs can lower injection latency but incur larger area and

power overhead.

We studied the throughput of RL with different configurations of ejection links and

EXBs on various synthetic traffic patterns. The NoC size for this study is 8× 8. The

results are shown in Figure 2.8. In the figure, each configuration is denoted by (x,y)

where x is the number of ejection links and y is the number of EXBs. The basic and

best in terms of area and power overhead is (1,1) configuration but it has the worst

performance. By adding up to three EXBs with a single ejection link, the throughput is

only slightly changed (less than 5%). This indicates that the number of EXBs is not very

critical to performance, and it is possible to use only one EXB for injecting long packets

while saving buffer space.

For (2,1) configuration, it doubles the chance for packet ejection when compared

to (1,x) configurations. The throughput is notably improved by an average of 38% for

49

all the patterns when compared to (1,1) configurations. For instance, hotspot traffic

pattern has 0.125 throughput in (2,1) configuration but only 0.065 in (1,1), a 92.5%

improvement). However, on top of (2,1) configuration, adding up-to three EXBs (i.e.,

(2,3)) improves throughput only by 5% on average.

Given all the results, we choose the (2,1) configuration as the best trade-off point,

and use it for the remainder of this section. We also plot the (16,16) configuration which

is the ideal case (no blocking in injection or ejection may happen). As can be seen, (2,1)

is very close to the ideal case. Section 2.5.3 provides a detailed study for the number of

times packet circling in loops for the (2,1) configuration.

50

0

15

30

45

0

15

30

45

0

6

12

18

0

25

50

75

(a) 4x4 (b) 8x8

(c) 16x16 (d) 8x8

3D CubeIMREVCM(3,5)M(3,3)M(3,1)M(2,5)M(2,3)M(2,1)M(1,5)M(1,3)M(1,1) RL

0

15

30

45

0

15

30

45

0

6

12

18

0

25

50

75

(a) 4x4 (b) 8x8

(c) 16x16 (d) 8x8

3D CubeIMREVCM(3,5)M(3,3)M(3,1)M(2,5)M(2,3)M(2,1)M(1,5)M(1,3)M(1,1) RL

0

15

30

45

0

15

30

45

0

6

12

18

0

25

50

75

(a) 4x4 (b) 8x8

(c) 16x16 (d) 8x8

3D CubeIMREVCM(3,5)M(3,3)M(3,1)M(2,5)M(2,3)M(2,1)M(1,5)M(1,3)M(1,1) RL

0

15

30

45

0

15

30

45

0

6

12

18

0

25

50

75

(a) 4x4 (b) 8x8

(c) 16x16 (d) 8x8

3D CubeIMREVCM(3,5)M(3,3)M(3,1)M(2,5)M(2,3)M(2,1)M(1,5)M(1,3)M(1,1) RL

0

15

30

45

0

15

30

45

0

6

12

18

0

25

50

75

(a) 4x4 (b) 8x8

(c) 16x16 (d) 8x8

3D CubeIMREVCM(3,5)M(3,3)M(3,1)M(2,5)M(2,3)M(2,1)M(1,5)M(1,3)M(1,1) RL

Figure 2.10: PARSEC and SPLASH-2 benchmark performance results (y-axis represents
average pack latency in cycles.) RL is compared with different Mesh configurations,

EVC, and IMR in (a), (b) and (c). In (d), RL is also compared with a 3D Cube.

51

2.5.2 Synthetic Workloads

Figure 2.9 plots the performance results of four synthetic traffic patterns for an 8× 8

NoC. RL has the lowest zero-load packet latency in all four traffic patterns. For example,

in uniform random, the zero-load packet latency is 21.2, 14.9, 10.5, and 8.3 cycles for

Mesh, EVC, IMR, and RL, respectively. When averaged over the four patterns, RL has

an improvement of 1.59x, 1.43x, and 1.25x over Mesh, EVC, and IMR, respectively. RL

achieves this due to low per hop latency (one cycle) and low hop count.

In terms of throughput, the proposed RL also has advantage over other schemes. For

example, the throughput for hotspot is 0.08, 0.05, 0.06, and 0.125 (per flit/node/cycle)

for Mesh, EVC, IMR, and RL, respectively. In fact, RL has the highest throughput for all

the traffic patterns. When averaged over the four patterns, RL improves throughput by

1.73x, 2.70x, and 1.61x over Mesh, EVC, and IMR, respectively. This is mainly owing to

the better utilization of wiring resources in RL. Note that, EVC has a lower throughput

than Mesh as EVC is essentially a scheme that trades off throughput for lower latency at

low traffic load.

2.5.3 PARSEC and SPLASH-2 Workloads

We utilize Synfull and Booksim to study the performance of RL, 2D Mesh with different

configurations, EVC, IMR, and a 3D Cube under 16 PARSEC and SPLASH-2 bench-

marks. The NoC sizes under evaluation are 4×4, 8×8 and 16×16 for RL, 2D Mesh,

EVC and IMR, and 4×4×4 for 3D cube. Figure 2.10 shows the results.

In Figure 2.10(a)-(c), RL is compared against 2D Mesh, EVC and IMR. From the

52

0%

20
%

40
%

60
%

80
%

10
0%

12
0%

14
0%

16
0%

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

Mesh
EVC
IMR
RL

w
at
er
_s
pa
tia

lw
at
er
_n
sq
ua
re

ba
rn
es

bl
ac
ks
ch
ol
es

bo
dy
tr
ac
k

ch
ol
es
ky

fa
ce
sim

fft
flu
id
an
im
at
e

lu
_c
b

lu
_n
cb

ra
di
os
ity

ra
di
x

ra
yt
ra
ce

sw
ap
tio

ns
vo
lre

nd
AV

G

Breakdown	of	NoCPower	(normalized	to	Mesh)

D
yn

am
ic

 P
ow

er
St

at
ic

 P
ow

er

Figure 2.11: Breakdown of power consumption for different PARSEC and SPLASH-2
workloads (normalized to Mesh).

53

figures, the best configuration for Mesh is M(1,5) (i.e. per hop latency of 1 and buffer

size of 5) and the worst is M(3,1). Lowering per hop latency in Mesh helps to improve

overall latency, and reducing buffer sizes may cause packets to wait longer for credits

and available buffers. The average packet latency of RL in 4×4, 8×8, and 16×16 are

4.3, 8.9 and 20.1 cycles, respectively. This translates into an average latency reduction of

RL over M(1,5) by 57.8%, 38.4% and 22.2% in 4×4, 8×8 and 16×16, respectively.

The IMR rings in a 16×16 network are very long and seriously affect the latency. RL

reduces the average latency by 23.3% over EVC and 41.2% over IMR.

As shown in Figure 2.10(d), the performance of 3D cube is clearly better than all the

Mesh configurations in (b) mainly due to lower hop count and larger bisection bandwidth.

Despite this, RL still offers better performance than 3D cube. The average latency of RL

is 8.9 cycles, which is 41% lower than the 15.2 cycles of 3D cube.

2.5.4 Power

Figure 2.11 compares the power consumption of Mesh (i.e. M(2,3)), EVC, IMR and RL

for different benchmarks, normalized to the Mesh. All the power consumption shown in

this Figure are reported after P&R in NanGate FreePDK 15 Cell Library [34] by Cadence

Encounter. The activity factors for the power measurement are obtained from Booksim,

and the power consumption includes that of all the wires.

The average dynamic power consumption for RL is only 0.26mW, and for Mesh,

EVC and IMR the average is 2.88mW, 4.27mW and 2.91mW, respectively. Because RL

has no crossbar, it requires only 9%, 6.1% and 8.9% of the dynamic power consumed

54

by Mesh, EVC and IMR, respectively. Meanwhile, static power is mostly consumed by

buffers. Unlike Mesh, EVC and IMR, RL has a much lower buffer requirement. As a

result, RL consumes very low static power of 0.18mW on average, while Mesh, EVC and

IMR consume 1.39mW, 1.64mW and 0.58mW, respectively. Adding dynamic and static

power together, on average, RL reduces the total NoC power consumption by 9.48X,

13.1X and 7.75X over Mesh, EVC and IMR, respectively.

2.5.5 Area

Figure 2.12 compares the router or interface area of the different schemes we are studying.

The results are obtained from Cadence Encounter after P&R2. We also add a bufferless

design to the comparison. The largest area is 60731µm2 for EVC (not shown in the figure)

followed by 45281µm2, 28516µm2, 20930µm2 and 6286µm2 for Mesh, Bufferless,

IMR and RL, respectively. The EXB and ejection link sharing techniques as well as

the simplicity of the RL interface are the main contributors for the significant reduction

of area overhead. Overall, RL has an area saving of 89.6%, 86.1%, 77.9% and 69.9%

compared with EVC, Mesh, Bufferless3 and IMR, respectively.

The wiring area is not included as wires are spread throughout the metal layers and

cannot be compared directly. We do acknowledge that IMR and RL use more wiring

resources than other designs. RL uses a small percentage of middle metal layers for wires

and, as a result, more repeaters are needed. The total area for all the link repeaters is

2Our CAD tools limit P&R for processing cores.
3In addition to area reduction, RL also has 2.8X higher throughput (under UR) and 64.3% lower latency

than bufferless NoC.

55

0.127mm2 which is 4.3% of the mesh router area. However, as middle layers are above

the logic area, RL is unlikely to increase the chip size.

56

45
28

1
µm

2

IM
R

62
86

 µ
m

2

R
L

Me
sh

20
93

0
µm

2
28

51
6
µm

2

Bu
ffe
rle
ss

Figure 2.12: Area comparison under 15nm technology.

57

010203040

4x
4

8x
8

16
x1

6

Average Hop count

Bi
t r

ev
er

se

010203040

4x
4

8x
8

16
x1

6

Average Hop count

Tr
an

sp
os

e

010203040

4x
4

8x
8

16
x1

6

Average Hop count

U
ni

fo
rm

05010
0

15
0

20
0

4x
4

8x
8

16
x1

6

Average Hop count

H
ot

sp
ot

R
L

IM
R

O
pt

im
al

 M
es

h

311.4 128.7

125.8 132.9

Figure 2.13: Average hop count for synthetic workloads.

58

2.6 Discussion

2.6.1 Scalability and Regularity

Figures 2.9 and 2.10 already showed the advantage of RL in terms of latency and

throughput for large networks. Figure 2.13 further compares the average hop count

(zero-load hop count) of RL, IMR, and optimal Mesh. As can be seen, IMR has very

high average hop count because of its lengthy rings. In contrast, the average hop count of

RL is only slightly higher than optimal Mesh. Note that RL achieves this low hop count

without having the switch capability of conventional routers.

Routerless NoC is not as irregular as it appears in the figures. In our actual design

and evaluation, all the RL interfaces use the same design (some ports are left unused if no

loops are connected), so the main irregularity is the way that links form loops. One way

to quantify the degree of link irregularity is how many different possible lengths of links,

which is n−1 for n×n NoC. This degree is similar to that of Flattened Butterfly [30]

and MECS [23].

2.6.2 Average Overlapping

We discussed before that as long as the overlapping cap is met, it is beneficial to approach

this cap for as many neighboring node pairs as possible to increase resource utilization

and improve performance. Table 2.1 presents this statistics for RL and IMR. It can be

seen that the average overlapping between adjacent nodes in RL is at least 20% more

than that of IMR. Also, the longest loop in RL is always shorter than the longest ring in

59

Table 2.1: Average overlapping and loops/rings in RL/IMR

Network Overlap
cap

Avg overlap(%)
of links

Max loops/
rings in node

Avg loops/
rings(%) in node

Longest
loop/ring

RL 4x4 4 3.33 (83.3%) 6 5 (62%) 12

IMR 4x4 4 2.33 (58.3%) 4 3.5 (43%) 14

RL 8x8 8 6 (75%) 14 10.5 (65%) 28

IMR 8x8 8 4.71 (58.9%) 10 8.2 (54%) 48

RL 16x16 16 11.33 (70.8%) 30 21.2 (66%) 60

IMR 16x16 16 8.13 (50.8%) 18 15.2 (47%) 240

�1

IMR, and the difference increases as the NoC gets bigger. Shorter loops reduce average

hop count and offer a lower latency. For example, in 16×16 the longest loop in RL is of

60 nodes while in IMR it is of 240 nodes.

2.6.3 Impact on Latency distribution

0

2

4

6

8

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39Pe
rc
en

ta
ge
	o
f		p

ac
ke
ts

Average	latency	(cycles)

%

%

%

%

%

%

Figure 2.14: Latency distribution of benchmarks for RL 8×8 NoC.

The extension buffer technique and the reduced ejection link technique save buffer

60

resources at the risk of increasing packet latency. Figure 2.14 shows distribution of aver-

age packet latency, averaged over different benchmarks. The RL interface is configured

the same as previous sections with one EXB and two ejectors. The take away message

from the figure is that the two techniques has minimal impact on latency under tight

resource allocation. For example, the average packet latency is only 8.3 cycles for RL,

and only 0.71% of the packets having latency larger than 20 cycles, with the largest being

39 cycles. The tail in the latency distribution is thin and short.

2.6.4 RL for n×m Chip

The RL design can be easily extended to any n×m network sizes. The RL interface

design and functionalities remain unchanged. The RLrec algorithm needs to be modified

slightly. With rectangular shapes instead of squares, NL and NH are not sufficient to

denote the four corners of a layer. Two more variables are needed to specify the corners

of a layer correctly. For Instance, NLr and NHr for low and high rows, and NLc and NHc

for low and high columns. Once a layer is correctly specified, the four groups of loops

can be generated in similar fashion. The rotation step is skipped as this is not possible

for rectangular networks, but the reversing direction step remains. The overlapping

calculation needs to reflect the orientation of the rectangular loops as well.

61

2.7 Highlights on implementing Routerless in Booksim

2.7.1 How Booksim works

Booksim [29] is a cycle-accurate simulator developed at Standford and has been validated

for accuracy for that RTL of Network-on-chip routers. Booksim comes with a broad

set of typologies, such as Butterfly, flattened butterfly, torus, mesh, etc. and a broad

set of routing algorithms such as XY-routing and dimension order routing. Booksim is

very easy to customize for any topology or router microarchitecture. The structure of

Booksim’s code is fairly simple and easy to grasp. The main configuration parameters

are all defined in booksim config.cc file including the total number of clock cycles

the simulator is expected to run, the configuration of the routers, the type of topology,

injection rate, and traffic pattern. One can set up all configurations and put them in a

single file and pass this file to Booksim to customize the simulator parameters. Example

of such files can be found in textttsrc/examples folder. Booksim also allow you to define

your own ad hoc topology. It includes a simple example file (networks/anynet.cpp)

that can be walked of through the steps to add new nodes and new links, for any custom

topology to the simulator process.

There are two main branches in Booksim traffic manager and network. The traffic

manager includes the traffic pattern module and the injection to the network and ejection

from the network modules. On the other side is the network branch which includes all

routers and links between routers. The traffic manager executes the function Step()

every time the global clock cycle counter increases to feeds the network with packets

generated by a traffic pattern. The network will deliver such packets to their destinations

62

by going through the pipeline of every router on the path from the source router to the

destination router. Once the packet reached its destination, it will be ejected and sent

to the traffic manager. Moreover, in each Step() the traffic manager checks if there is

any received packet from the network. If there is, the necessary statistics are recorded

(mainly latency and hopcount) and the packet is deleted.

The network, all routers, and all links in Booksim implement the virtual functions

1. ReadInputs()

2. Evaluate()

3. WriteOutputs()

inherited from TimedModule class. These functions must be invoked by all implementers

(i.e. network, routers, and links) every clock cycle and are called by network, routers,

and links. The traffic manager, which holds pointer to the network invokes the net-

work’s ReadInputs, Evaluate, WriteOutputs. The network implements each of

ReadInputs, Evaluate, WriteOutputs by looping through all the pointers it holds

for routers and links to invoke ReadInputs, Evaluate, WriteOutputs, respectively,

of the related component (router or channel). Figure 2.15 depict the execution hierarchy

in every clock cycle.

63

c

c

Traffic Manager

ReadInputs() Evaluate() WriteInput()

Network

Invoke
ReadInputs()

Invoke
Evaluate()

Invoke
WriteOutputs()

For each Router and link

Figure 2.15: Call hierarchy for TimedModule objects in every clock cycle

64

Fr
om

 R
ea

dI
np

ut
s

To
 W

rit
eO

ut
pu

ts

Ro
ut

in
g

VC
 a

llo
c

SW
 a

llo
c

Tr
av

er
sa

l

Figure 2.16: Router’s pipline implemented by Evaluate() in Booksim

65

Routers and links are the basic building blocks of the simulator. Routers implement

the TimedModule virtual functions as follows. The ReadInput function will check all

input links attached to a Router object and read any available flit or credit. The Evaluate

function process flits in buffers by moving them through the router’s pipeline as illustrated

in Figure 2.16. The last function WriteOutput sends any processed flit/credit to the

output queue of the attached link. The link objects implements only ReadInputs() and

WriteOutputs(). ReadInputs() will read any read flit and will deliver it to the other

side of the links in the following clock cycle and WriteOutputs() will send flits/credit

to the attached router or ejection process.

Booksim supports a wide range of synthetic traffic patterns, namely, uniform, bit

complement, bit reverse, tornado, traverse, diagonal, asymmetric, taper64, neighbor,

shuffle, bad dragon, and random. The traffic patterns are implemented in traffic.cpp

file. Moreover, one can easily feed Booksim with real workload traffic models by feeding

injection process of Booksim (current one uses synthatic traffic patterns) with another

one. Synfull [9] is an example for modeling workload traffic models that can easily

interact with Booksim to run under workload models.

2.7.2 Routerless implementation

Recall that, the routerless design replaces routers with simple interfaces interconnected

by a set of loops. The interface has a basic pipeline process where each loop, passing

through an interface, acts independently from all other loops in the interface. Moreover,

routerless is not a credit-based design.

66

We code the RL interface in Booksim as a TimedModule and implement each loop

as a stand alone ad hoc topology. The routerless interface pipeline is implemented by

executing a set of functions sequentially. The functions are shown in pseudocode 2.
Routerless Pseudo-code 2: Evaluation

1 input queuing().

2 Ejection Module().

3 Input Module().

4 Injection Module().

5 Route Traffic().

6 Reset Status().

The above pseudocode 2 for every clock cycle during simulation. The input queuing

,pseudocode 3, goes through all the loops in an interface and read and enqueue any

incoming flit (from upstream interface or injection link) in the respective flit buffer of the

loop.

Routerless Pseudo-code 3: Input Queuing

1 for each input channel i do

2 if there is an incoming Flit then

3 Enqueue flit to buffer i

The ejection module,pseudocode 4, checks if any flit, in any buffer of the loops in the

interface, is at its destination. If the number of flits found is more than the ejection links,

then we choose the oldest flits among all the flits and mark them ready for ejection.

67

Routerless Pseudo-code 4: Ejection Module

1 begin

2 if Ejection link is busy ejecting a long packet then

3 Return. //use previously used loop

4 oldestFlit = NIL

5 L =−1 //loop id of the oldest flit

6 for each head flit F in the buffer of loop X do

7 if destination of F is the current node then

8 if F is older than oldestFlit OR oldestFlit == NIL then

9 oldestFlit = F

10 L = X

11 if oldestFlit is not NIL then

12 Flag the interface that a flit is ready to eject at loop

L

The input module, pseudocode 5, forwards flits in buffers that are not marked for

ejection.

68

Routerless Pseudo-code 5: Input Module

1 begin

2 for each head flit F in the buffer of loop L do

3 if destination of F is the not the current node then

4 if L is flagged for long packet injection then

5 Stall AND Continue.

6 Flag the interface that loop L has a flit to forward.

The injection module, pseudocode 6, tries to inject a flit into a loop that is not marked

as busy by input module. In other words, the injection module goes through all loops

that include the destination node of the injected flit and pick a loop that is not marked as

busy by the input module.

69

Routerless Pseudo-code 6: Injection Module

1 if Injection links is busy injecting a long packet then

2 Inject the head flit at injection links to previously used

loop.

3 if head of injection link has a flit F then

4 if flit F is part of long packet AND EXB is not available

then

5 return.

6 loopSet = all loop which has destination node of F.

7 for each loop L in loopSet do

8 if L is free (i.e. not flagged then

9 Flag L to inject flit F.

10 if flit F is part of long packet then

11 Attached an EXB to the tail of L’s buffor to stall

incoming flits.

12 Mark the used EXB as busy.

13 Break AND Return

All the previous functions do not take any action but only mark respective flit/loop

with a tag. The action to either send/eject/forward/inject is executed by route traffic,

pseudocode 7. The last line in calls reset status function, pseudocode 8, which clears

all tags and flags of loops and links (except for the case of injecting/forwarding/ejecting

70

long packets.) Following the order of execution above is very important to assure no

conflict between the interface’s modules.

Routerless Pseudo-code 7: Route Traffic Module
1 for each loop L do
2 if L is flagged for ejection then
3 Eject the head flit of L buffer

4 else if L is flagged for Injection then
5 Inject the head flit at injection buffer to output link

of loop L
6 else if L is flagged for Forward then
7 Forward the head flit of L buffer to output links of loop

L

71

Routerless Pseudo-code 8: Reset Flags Module

1 for each loop L do

2 if L forwarded a tail flit of a packet then

3 reset the flag of L.

4 for each Injection link I do

5 if I injected a tail flit of a packet then

6 reset the flag of I.

7 for each Ejection link E do

8 if E injected a tail flit of a packet then

9 reset the flag of E.

10 for each EXB exb do

11 if exb empty then

12 detached exb from any loop.

13 mark the exb as available.

The loops are implemented in Booksim by a set of links where those links connect

interfaces together. Booksim implements one loop after the other. It reads loops from

a file that is structured as shown in Table 2.2 for a 4×4 network (for 8×8 and 16×16,

check the appendix.) Moreover, routerless has one clock cycle delay per hop. One

possible solution to implement one clock cycle per hop delay is to set the link delay to

zero. However, Booksim will raise an error if we set delay by zero. We work around this

by updating channel.cpp file to send any received flit in the same clock cycle without

72

Table 2.2: Loops for 4×4 NoC

Loop ID Nodes
1 [0, 1, 5, 9, 13, 12, 8, 4]
2 [3, 7, 11, 15, 14, 10, 6, 2]
3 [0, 1, 2, 6, 10, 14, 13, 12, 8, 4]
4 [3, 7, 11, 15, 14, 13, 9, 5, 1, 2]
5 [0, 4, 8, 12, 13, 14, 15, 11, 7, 3, 2, 1]
6 [0, 1, 2, 3, 7, 6, 5, 4]
7 [4, 5, 6, 7, 11, 10, 9, 8]
8 [8, 9, 10, 11, 15, 14, 13, 12]
9 [5, 6, 10, 9]

10 [5, 9, 10, 6]

any delay.

The above implementation will allow executing simulations using synthatic workloads

only. For application workloads, we used Synfull [9] as explained in the evaluation sec-

tion. Synfull is capable to generate workload traffic running on at most 16 cores. In order

to cater for more than 16 cores, we duplicated Synfull processes and randomly mapped

the cores of each Synfull process to Booksim nodes. Each Synfull process uses a unique

socket id on the host system. Synfull package provides fes2 interface that lunch a

Synfull instance and communicate with it to send/receive flits. The fes2 interface acts

like an interface between Synfull and Booksim. In order to duplicate Synfull processes,

we need Booksim to decide how many Synfull instances it needs (this is implemented

in fes2 interface.cpp file.) On the Synfull side, each instance created must use a

unique socket id or else a run time error occurred (NetworkInterface.cpp in Synfull

packege.)

73

2.8 Conclusion

Current and future many-core processors demand highly efficient on-chip networks to

connect hundreds or even thousands of processing cores. In this paper, we analyze

on-chip wiring resources in detail, and propose a novel routerless NoC design to remove

the costly routers in conventional NoCs while still achieving scalable performance. We

also propose an efficient interface hardware implementation, and evaluate the proposed

scheme extensively. Simulation results show that the proposed routerless NoC design

offers significant advantage in latency, throughput, power and area, compared with other

designs. These results demonstrate the viability and potential benefits of the routerless

approach, and also call for future works that continue to improve various aspects of

routerless NoCs such as performance, reliability, and power efficiency.

74

Chapter 3: Reliability of Routerless NoC

3.1 Faults in Networks-on-Chip

Networks-on-Chip have been historically regarded as fault-free; however, as manufac-

turing technologies continue to push physical limits, and feature sizes on chips shrink

into the tens of nanometers, faults are increasingly expected during the operating life of a

chip, and represent a significant design challenge to overcome. Due to the rarity of fault

events, chip designers must carefully consider resource costs devoted to tolerating faults.

Faults may be categorized as either soft or hard faults. Soft faults are transient effects,

commonly caused by events such as crosstalk, radiation, and electron tunneling. Hard

faults are persistent failures, often as a result of manufacturing defects or due to aging

of the chips due to heat and environmental exposure. As silicon feature size continues

to decrease towards the practical limit of 5nm [19], faults will become more prevalent,

as the above effects are more pronounced at smaller scales [39]. A link fault severs

communication between two or more cores, preventing them from sharing cache data,

rendering the chip nonfunctional if a workaround is not present. Thus, fault tolerance is

necessary for many NoC applications.

While macro-scale computer networks may be designed to overcome faulty links

through techniques such as retransmission, rerouting, and physical repair of faulty

network hardware, the availability of such solutions for NoC is limited due to the tight

75

constraints on size, speed, and power usage. While soft faults are more prevalent than

hard faults, they are fairly easy to overcome through retransmission which is enforced

by timeouts and cache coherence protocol. Hard faults, on the other hand, cannot be

resolved without bypassing the fault through leveraging of existing redundancy in the

network. Redundancy can be integrated into chip design with a combination of features,

such as duplicated links, modified routing algorithms that re-route around faults, and

forward error correcting (FEC). Although FEC can be implemented on the circuit level,

independent of overall network design, the most commonly used FEC techniques, such

as SEC/DED, are not equipped to overcome the link faults. Thus, redundancy in the

network design itself is required for effective fault tolerance.

76

Figure 3.1: RL Algorithm grows the network in concentric layers

77

Figure 3.2: Layer 1 (2x2) contains two counter-rotating loops

Figure 3.3: Layer 2 (4x4) loops provide connectivity to new outer nodes

78

Figure 3.4: Layer 3 (6x6) loops showing alternating direction of column loops

79

Percentage of node pairs sharing only one loop

4x4

8x8

16x16

0% 16% 33% 49% 65%

Figure 3.5: Percentage of node pairs that share a single loop

80

Figure 3.6: Only one loop shared between gray nodes and the black node

81

3.1.1 Motivation

Although RL is a promising approach to NoC design, it is severely limited compared

to router-based networks in its ability to adapt to changes in network state. Although

many router-based networks are implemented using simple routing algorithms – such

as xy-ordered routing, where a flit travels along the x-axis until reaching the same x-

coordinate as its destination, and then travels along the y-axis until reaching its destination

– expanding the decision-making capabilities of routers to handle network congestion

and other abnormalities is relatively straightforward, as much of the required hardware

(crossbar, buffers, etc.) is already present. Router-based networks also have the advantage

of information availability, in that each router along a transmission path has the capability

of sensing its neighborhood and altering the path of packets traveling through it in a

distributed manner.

In contrast, RL’s advantages over router-based networks come from making single-

point routing decisions based on hardwired knowledge of the entire network topology.

Adding the ability of the sending node to sense the state of candidate loops and select

the optimal path to inject a packet on is untenable as it would require each node to have

complete state information about the network, which would complicate the design and

add network congestion. The elapsed time between a state information broadcast and

the expected arrival of a packet to the broadcaster may also be quite long, reducing the

usefulness of such an approach. Furthermore, while a router-based network has a high

degree of available path diversity to support more complex routing algorithms if desired,

an RL network may provide only one or two paths, as shown in figures 3.5 and 3.10,

82

for an injecting node to select from in order to reach the destination node, limiting the

usefulness of adaptable routing algorithms at the injection stage without modifications

to the RL design to increase path diversity. An alternative approach that avoids these

obstacles is to add resources that enable nodes to resolve adjacent faults with redundant

links, and/or limited re-routing capabilities.

3.2 Addressing reliability in RL NoC

While this is the first paper addressing fault tolerance in the recently-developed RL design,

prior research has addressed several techniques in mesh networks, generally leveraging

path diversity and existing router hardware to bypass faulty links through mis-routing.

Mesh networks are well suited to this task by design as the fault and routing hardware that

handles the bypass operation are already co-located. In contrast, RL requires significant

changes to support such techniques due to the inability to reroute packets mid-flight.

Routing decisions in an RL network are made by the packet injector, which may be

separated by some distance from the fault. Thus, a solution requires network-wide fault

broadcasts and updating of routing tables, or fault-adjacent reliability hardware.

One straightforward approach to tackling the RL reliability is to add extra passive

links to act as redundant connections between nodes, as shown in Figure 3.7. In the event

of link failure, the nodes on each end of the broken link would simply switch to using

an available passive link as needed. This strategy is also flexible, in that extra passive

links can always be added to further increase the fault tolerance of the network. However,

passive links have a major downside in that they occupy physical space that could be used

83

Each link is independent
Blue are clockwise and red are acw

Figure 3.7: Passive links offer redundancy in the event of link failure

for active wiring resources, such as extra loops, and they require switching architecture

on each node to bypass any link that fails.

Figure 3.8: Supplemental short loops deactivate and provide donor links to bypass failed
links in RL loops

Another strategy is similar to adding passive links, except, in this design, the addi-

tional links are connected to create several auxillary short loops (an example of a possible

short loop configuration is shown in figure 3.8). These short loops provide increased

throughput while active; when a link on a main RL loop fails, the short loop on that row

84

or column donates its own link to the main loop, and becomes inactive. Although this

provides some benefits over passive links, it still requires more than 4N2 buffers and

links to implement. All traffic in a faulty loop and short loop may be dropped in the event

of a link failure, as well, and the short loop links from a donor loop becomes inactive,

reducing the utilization of available wiring resources.

Figure 3.9: Proposed auxiliary’s Hamiltonian loop to provide redundancy in the event of
loop failure

RL can also be made more reliable by the addition of a final loop that follows a

Hamiltonian cycle through the network, depicted as in Figure 3.9, providing redundant

connectivity in the event that any two nodes are disconnected due to a single loop failure.

A Hamiltonian cycle has an advantage over short loops in that it uses fewer wiring

resources for the additional loop, and also requires fewer buffers. However, this strategy

is still quite costly as it requires the addition of N2 buffers and links. The Hamiltonian

cycle also dramatically increases latency between nodes that may have been closely

connected in the failed loop, as nodes in a Hamiltonian cycle may be directly connected,

at most, to two of four possible neighbors. Also, as communication between nodes often

85

entails a request message and a reply message, the total length of the loop, being N2 hops,

incurs a tremendous performance penalty in the event that it is used to bypass a faulty

link. This strategy also entails disabling a faulty loop once detected, which might cause

all traffic currently on that loop to be dropped. Furthermore, in the event of multiple

link failures across the network, the Hamiltonian path would quickly saturate trying to

handle the simultaneous traffic load of multiple deactivated loops. Finally, the otherwise

functional links of a deactivated loop would remain unused in the event of a single link

failure on that loop, which is very wasteful of wiring resources.

Although the above solutions could improve RL reliability, we did not find them to

be workable techniques due to their costs and unacceptable performance degradation. In

this paper, we instead present a method of achieving reliability in RL network without

the addition of passive links, active loops, or buffers, with minimal hardware overhead to

achieve the switching capabilities necessary to implement a bypass scheme. In contrast to

the above solutions, we will provide the necessary fault tolerance by leveraging existing

structures within the RL network design to overcome link failure, and provide seamless

redundancy.

3.2.1 A fault example in RL

In RL networks, the probability of link failure is expected to be higher than in a router-

based network due to the abundance of links. Although one might assume that the excess

connectivity of RL would provide fault tolerance due to path diversity, we will show that

this is not the case; in fact, a single fault can completely sever communication between

86

pairs of nodes, as shown in the following example. Consider the section of a 6× 6

network shown in Figure 3.10. After the entire network has been generated using the RL

algorithm, the blue loop in Figure 3.10 remains the only loop that connects the black

colored node in position (3,4) to the gray colored nodes in positions (1,1), (1,2), (1,3),

(5,1), (6,1), (6,2), and (6,3).

As no other loop will connect these pairs in the final network design, a single fault

in one of the 16 links comprising this critical loop will prevent the black node either

from sending or receiving messages to or from each of the gray nodes, preventing normal

communication for 7 pairs of nodes. In RL, each node considers only the state of its

network interface to determine which action (inject, eject, forward, or stall) to perform.

This means that, even if link fault detection were available, only the two nodes connected

by the faulty link would be aware of the problem. The remaining nodes would be unable

to respond in any way to the fault, instead treating the broken loop as if it were fully

operational. The consequence of this is that flits will be constantly dropped or corrupted

when traversing the faulty link, causing abnormal operation of the whole chip due to

a single-point failure. In a 6×6 NoC, RL produces a total of 280 links, while a mesh

network of the same size, with one link between each node requires only 60 links. Thus,

it is reasonable to assume that the probability of single-point failure is higher in RL, and

a robust fault-tolerance mechanism is necessary.

In this section, we present a design for handling link failure locally, without requiring

broadcast of link state to affected nodes, or additional links beyond the original RL design.

We fuse the faulty loop with a non-faulty loop, to bypass the fault and restore connectivity.

This fused loop visits all of the nodes previously visited by its two constituent loops,

87

1 2 3 4 5 6
1

2

3

4

5

6
Figure 3.10: Only one loop shared between gray nodes and the black node

88

ensuring that nodes can still communicate as if both loops were functioning normally,

with a tolerable increase in average latency for nodes utilizing the fused loop. If the

faulty link provided a connection from node x to node y then the only requirement for the

donor loop is that it provides a connection in the reverse direction, from node y to node x;

when this condition is met, the two loops may fuse, isolating the fault from the rest of the

network. This process is carried out by the following steps, depicted in figure 3.11.

!

(a) (b) (c)

Figure 3.11: Two loops are joined into one after detecting a faulty link

1. Detection of the faulty link f , connecting x→ y.

2. Selection of donor loop with link f ′, connecting y→ x.

3. At x switch the output of the fx buffer from f , to the input of the f ′x buffer.

4. At y switch the output of the f ′y buffer from f ′, to the input

Following the completion of the above steps, the loop previously containing the faulty

link, f , and the donor loop previously containing f ′ are joined into a single larger loop,

as shown in Figure 3.11. Notice that, in step (c) of the figure, the new loop visits two

buffers when passing through x or y, rather than one, as it has combined the resources of

both component loops together.

89

Thus far, we have demonstrated a technique for fusing a faulty loop and donor loop

to bypass a faulty link. However, we have not yet discussed the second step of the fusion

process described above, where the donor loop is selected. For this technique to work

across the entire RL network, we must guarantee that a donor loop can be selected for

every fault that might occur.

Here, we demonstrate a technique to select a donor loop for every potential fault on

a generic RL layer, which can be applied to each layer independently, thus providing a

donor loop for every link in the network. If we look at only the row loops and the outer

loop for a moment, as shown on the left portion of Figures 3.3 and 3.4, we can see that

each link only ever overlaps with one other loop, and that the direction of travel of the

overlapping loop is always opposite. Thus, for each link on any of these loops, the donor

loop is simply whichever of these loops overlaps that link. Next, we turn our attention

to the set of column loops on the layer in question. On the right half of Figure 3.3, we

can see that there are a total of four column loops. For each of the links shown, there

is, as before, only one overlapping loop, which also happens to travel in the opposite

direction of the link in question. As before, for each link, the donor loop is whichever

loop overlaps that link. For layers with more columns, we simply group the columns

into pairs (1 with 2, 3 with 4, 5 with 6, etc.) and apply the same process for each pair of

columns.

90

3.2.2 Fault detection and switches

Fault detection in integrated circuits is very challenging and heavily depends on the

underlying physical properties of the fabrication technology and design decisions such as

manufacturing process, space between wires, clock rate, and when to perform testing.

For detecting faulty links in RL, we consider a popular technique, Built-In-Self-Test

(BIST), which allows a circuit to test itself without interruptions. BIST consist of the

test data generator (TDG) and the test error detector (TED). TDG generates different

patterns on the transmission end of a link and TED checks on the receiving end of the

link if the unaltered pattern is received. If an alteration is detected, then the link is no

longer considered reliable, and the fault tolerance procedure is triggered.

To fuse the loops together, we use a simple multiplexer at the input of each buffer,

allowing it to take input either from its link, or from the output of the proper buffer, once

loop fusion is triggered.

TDG TED

RL Interface RL Interface

Figure 3.12: High level BIST design to detect faults in links.

91

Table 3.1: Key configuration parameters of simulation

Coherence Protocol MOESI
Virtual networks 3

Memory size 1GB
l1i size 32kB
l2 cache 64

l1d associate 4
l1d size 32kB
l2 size 128kB

l2 associate 8
Memory Controllers 4

Link width 128bit
Control packet 1 flits

Data packet 5 flit
Extension Buffer 5 flits

3.3 Evaluation and results

3.3.1 Evaluation methodology

To evaluate the effectiveness of our proposed fault tolerance strategy, we simulated

an 8×8 RL NoC with the reliability features implemented using Garnet2.0 [5] in the

GEM5 [12] platform with the configuration parameters shown in Table 3.1. RL loops

were generated following the RL algorithm in [7], except that the algorithm was modified

to alternate the orientation of successive pairs of column loops between clockwise and

counter-clockwise, to support the proposed fault tolerance scheme.

Synthetic traffic patterns and PARSEC [15] workloads were simulated to capture

performance statistics. The synthetic traffic statistics collected after completion of 100,00

cycles at various injection rates starting from 0.005 flit/node/cycle and incremented by

92

0.005 flit/node/cycle until the maximum throughput was reached. Moreover, performance

statistics for seven PARSEC workloads were collected using GEM5 full system simu-

lation. Traffic traces were also collected to evaluate and compare hop counts to Mesh

topology.

Synthetic benchmarks were run repeatedly for one-at-a-time failure of each of the

672 links in the 8× 8 RL network. For the full system simulations running PARSEC

benchmarks, only one run was performed with a randomly selected link failure, due to

computational constraints. For each of the synthetic and full system simulation workloads,

one control run without any faults was also performed.

Power and area were estimated after place and route, following a similar implemen-

tation to [7] based on Verilog post-synthesis simulation. In the power calculations, we

assumed a high 0.5 link utilization ratio for switching activity input and 1 GHz clock

frequency.

3.4 Results and Analysis

3.4.1 Synthetic workloads

Figure 3.13 presents the average latency results for 8 synthetic traffic patterns at injection

rate 0.005, for fault-free operation, and the overall average latency across all 672 link-

fault runs. On average, latency increased by 5.2% due to a fault, with the minimum

average latency increase of 4.01% with the transpose traffic pattern, and maximum

average latency increase of 6.92% with the tornado traffic pattern.

93

Latency for syntactic traffic patterns

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

0

2.75

5.5

8.25

11

unifo
rm

tra
nsp

ose

tornad
o

sh
uffl

e

neig
hbor

bit r
otat

ion

bit r
ev

ers
e

bit C
omp.

av
era

ge

No Fault Avg. of 1 link fault

Figure 3.13: Average latency of traffic patterns at injection rate 0.005.

When a fault occurs in RL, only two loops fuse together to form a longer loop; as a

result, all the other loops remain in normal operation, which limits the impact that the

new fused loop can have on the network latency, as it comprises a small fraction of the

overall network. For example, an 8× 8 network has 44 loops; after a fault, 42 loops

remain intact, and a 43rd loop is created from the faulty and donor loops. Because of

this, the effect on hop count is low. Moreover, Figure 3.14 investigates the effect of link

faults on hop count (based on uniform random traffic pattern) in RL NoCs. The effect of

a fault on the average hop count is low, and the relative percentage change decreases as

the network size increases, because the percentage of nodes and loops affected by a fault

decreases as the network size grows. For example, the hop count of the 4×4 network

with a fault is increased by 8% in the average case and 16% in the worst case. However,

for the 16×16 network the hop counts increase by 1% and 4% for the average and worst

cases, respectively.

94

Average hop count after one fault

Av
er

ag
e

ho
p

co
un

t (
U

ni
fo

rm
 ra

nd
om

)

0.00

4.50

9.00

13.50

18.00

2x
2

4x
4

6x
6

8x
8

10
x1

0
12

x1
2

14
x1

4
16

x1
6

Average Hop count (no fault)
Expected Average Hop Counts (1 fault)
Maximum Average Hop Counts (1 fault)

Figure 3.14: Average hop count prior to fault vs. after a fault. Average hop count
depends on fault location expected and worst case average hop count are shown.

PARSEC execution time

0%

25%

50%

75%

100%

125%

sw
ap

tio
n

ca
nnea

l

body t
rac

k

blac
ks

ch
oles

fluidan
im

ate

str
ea

mclu
ste

r

fac
es

im

av
era

ge

No Fault One Fault

Figure 3.15: Percentage of execution time change with and without a fault

3.4.2 PARSEC Workloads

Figure 3.17 presents the average latency for the 7 PARSEC workloads with no fault and

with a randomly selected fault. Similar to the synthetic results, the latency increase after a

fault is still very low. The benchmark with the largest increases in latency is blackscholes,

95

RL expected hop count for PARSEC traces

av
er

ag
e

H
op

 c
ou

nt
0

3

5

8

10

sw
ap

tio
ns

blac
ks

ch
oles

fac
es

im

bodytr
ac

k

str
ea

mclu
ste

r

ca
nnea

l

fluidan
im

ate

av
era

ge

Fault free hopcount Expected hopcount Max hopcount Min hopcount

Figure 3.16: Expected average hop count for 8×8 RL

Latency for PARSEC workloads

Av
er

ag
e

la
te

nc
y

(c
yc

le
)

0

2.75

5.5

8.25

11

sw
ap

tio
n

ca
nnea

l

bodytr
ac

k

blac
ks

ch
oles

fluidan
im

ate

str
ea

mclu
ste

r

fac
es

im

av
era

ge

No Fault With Fault

Figure 3.17: Average latency of PARSEC workloads with and without a fault

with an increase of 18.4%, while the lowest increase in latency was found with facesim,

at 5.8%. Overall, the average increase in latency across all the PARSEC benchmarks was

10%.

Moreover, Figure 3.15 compares the total execution time for each workload to the

baseline, following a random fault. Among all the workloads, fluidanimate execution

96

time increased by 22.15% while the execution time for canneal reduced by 7.17% after

the fault, meaning that the modified loop structure following the fault offered better

performance for canneal. The average increase in execution time is 2.63%

3.4.3 PARSEC traces

We extensively study the hop count metric in a fault free and single fault instances in RL

and optimal Mesh. Due to long execution time of a full system simulation in GEM5, it

would be hard to run the simulator to capture hop count for each link failure. Therefore,

PARSEC traces are used and feed into another program to calculate only hop count for

the traces.

Using PARSEC traces, we computed average hop count 672 times for every link fault

in the 8×8 RL. Figure 3.16 depicted the expected average hop count for all workloads

beside maximum and minimum average hop count after a single fault. The average

hop count for fault free case is 7.35 and the expected average in a single fault scenario

increases to 7.56 hops which is 2.8% where as the maximum is 3.5% (blackscholes) and

the minimum is 2.29% (fluidanimate).

3.4.4 Power and area analysis

The unmodified RL interface offers significant reductions in power and area usage

compared to router-based NoCs – 86% less area and 91% less power than a typical mesh

router [7]. The additional logic required to implement the reliability scheme comprises

97

of switches to fuse the loops, and BIST units to detect faults. This logic was added to

the base routerless design, and was placed and routed using Cadence Encounter. The

number of loops visiting a node is non-uniform across the network, increasing towards

the central nodes. To calculate

To calculate the number of loops overlapping a node in RL is non-uniform – the

overlapping increases towards the center of the network. For an 8×8 RL network, the

average overlap is 10.5 loops overlapping a node, so we calculated the area and power

usage for a 10-loop overlapping node. The 10-loop node requires 5853µm2 of area for

the interface, including the reliability components.

RL interface design offers a significant reduction in power and area usage compared

to router-based NoCs [7] (86% less than typical mesh Router.) We implement additional

switches and BIST in Cadence Encounter after P&R. An 8 RL interface require 5853µm2

area assuming the number of loops in this interface is 10. The additional basic components

to implement the reliability features require less than 4% of the total RL interface area

and this brings the total to 6083.125µm2.

All switching activities for power calculations were gathered during running PARSEC

workloads. The additional BIST and switches components elevated static power usage

by 13% and dynamic power by 38%. In total, an extra 20.3% increase in total power.

The results for each workload is reported in Figure 3.18. The design of RL is very basic

compared to on-chip routers. In [7], RL is reported a power reduction of 9.48X over

Mesh. Therefore, any additional component added to the design will notably elevate the

power requirement. This is why the dynamic power of RL is increased by 38% after the

addition of BIST and link switches.

98

RL power results

0%

25%

50%

75%

100%

blac
ks

ch
oles

bodytr
ac

k

ca
nnea

l

fac
es

im

fluidan
im

ate

str
ea

mclu
ste

r

sw
ap

tio
ns

Ave
rag

e

Baseline Static
Baseline Dyn.
Static BIST&MUX
Dyn. BIST&MUX

Figure 3.18: Breakdown of power consumption for PARSEC workloads

3.5 Discussion

3.5.1 Multiple faults in NoCs

We presented above an approach to tolerate a single fault link in RL NoC using the

original loop set. However, if two links go faulty the NoC may get disconnected if and

only if two loops were fused twice. For example, assume links x,y are on loop A and the

donor loop for both x,y is the same loop B. After a link fails, say x, the NoC would follow

the steps to fuse loops A and B into one big loop AB. Now the donor loop for link y is

the new loop AB and what happens if two opposite sides of a donut are squeezed? It gets

disconnected into two smaller donuts. See Figure 3.19 for illustrations. But how likely

two or more faults happen. For two faults case in an 8×8 NoC, we wrote a small program

to count the number of link pairs that will fuse two loops twice. Among all possible

225456 pairs, only 2216 pairs are considered bad and will disconnect the NoC if any

99

!

!!

y x

(a)

(b)

(c)

Figure 3.19: Fusing two loops more than once will result into disconnected loops.

of those pairs are used for fault toleration. The percentage of bad pairs is only %0.982.

For three faults case, the total number of triple links is 50351840 and only 672412 are

triples may disconnect the network if two or three links failed. The percentage of the bad

triples is %1.335. In the extreme case, a loop set of N cordiality can theoretically tolerate

at most N−1 if and only if each link failure fuse two disjoint loops. In Figure 3.20, we

demonstrate an example of how a 4×4 RL NoC can achieve the maximum number of

100

(a) (b)

(c) (d)

Figure 3.20: Example of ten faults in 4x4 NoC

fault which is ten. The sub-figures (a), (b), and (c) of Figure ?? are results of fusing three

loops after two link failures in each sub-figure. Then, (d) can clearly fuse with (a),(b),(c)

because those loops overlap on the outer layer and (d) is the only clockwise direction

loop.

In router-based NoCs tolerating faults is more complex compared to RL NoC. Upon

detecting a link is malfunctioning, the NoC behavior and function may change drastically

especially the routing protocol. Unlike RL, updating or changing the routing protocol is

straightforward because the NoC may no longer look regular (e.g. N×N Mesh). The

adaptation on the routing protocol must assure the NoC is deadlock-free.

101

3.6 Highlight on implementing RL in Gem5

The Gem5 is a big piece of software that is structured into multiple subsystems. GARNET,

or the NoC simulator, is part of the Ruby subsystem. Gem5 has one global counter for the

system clock cycle and employ a global event queue that holds pointers to all components

that needs to be waked up in the future (upcoming clock cycles.) Unlike Booksim, where

it goes through all components and execute the code regardless if the component is idle

or has nothing to process, Gem5 saving computation cycles of the host system by running

components that are not idle.

GARNET mainly contain two kinds of components, links and routers. Each router/link

is a Consumer object that can be enqueued in global event queue and waked up in by

simulation process. GARNET, by default, implement a standard Mesh routers which is

very similar to the pipeline implementation of Booksim. Therefore, we follow a similr

implementation of RL as given by Section 2.7.2. Moreover, we joined routers along

with links in order to implement the one clock cycle per hop. Therefore, the flow of

execution for each RL interface is to read inputs from links, process the flits, and then

send them. We include our implementation code in the appendix in addition to topology

implementation.

3.7 Conclusion

In this chapter, we presented a solution to let the routerless tolerate one fault. The

technique does not require any additional links and no changes to the functionality of

any of the interfaces. Instead, we fuse two loops into one in case a fault occur to make a

102

bigger loop to avoid passing through the faulty link. This solution requires 4% and 20.3

% of area and power budges, respectively. Latency, after a fault occur, is increased by

5.2% and 5.8% for synthetic patterns and PARSEC workloads, respectively.

103

Chapter 4: Conclusion and future work

In this thesis, we presented a solution for the network-on-chip (NoC) part of upcoming

era of many-core processors. These many-core processors usually employ lightweight

processing elements running on reduced instruction sets to stay within area and power

constraints. A major performance bottleneck of these many-core processors is the on-chip

interconnect. Conventional router-based designs highly depend on the on-chip router

component. Despite the flexibility that routers brings to the design, they are area and

power heavy components. When the number of routers increase on-chip, they will

occupy a large amount of the die’s area and consume a great amount of power and, hence,

devote most of the chip resources to the NoC instead of the processing elements. The

routerless (RL) design is a novel NoC design that do not employ any routers and brings a

large saving in area and power budgets without any loss in performance when compared

to the conventional NoC designs. A key aspect in this design, when compared to the

router-based NoC, is the amount of wires utilized to create the loops that interconnect

all processing elements. The number of wires has been underutilized in all router-based

NoC mainly due to crossbar in routers. Each loop in RL connects a subset of nodes

and acts independently among all other loops. The loop isolation incredibility reduces

the design complexity and offered a notable saving in area and power budgets with no

performance trade-off. In addition, RL design is inherently deadlock free and all possible

network abnormalities are resolved.

104

Shrinking features sizes due to technology innovation increased failure rates of on-

chip components. The routerless design uses a large number of wires which increases

their failure rate. We presented an approach to tolerate permanent link failures that

require no additional links between RL components. The solution simply is to fuse two

loops into one big loop to detour around the faulty link. This fault tolerance approach

requires no changes on the functionally of RL design after a link goes faulty.

4.1 Future work

The RL has a huge design space where we only scratch its surface. In the following

subsections, we present several possible future directions.

4.1.1 Routerless tiles

Adjacent nodes in large RL networks share a lot number of loops. However, deflection

of flits may notable increase latency and hence effect performance. A possible solution

might be to use small n×n RL network and place them as tiles on the die. We can either

use loops or router to connect those tiles.

4.1.2 Optimal width of a link

RL will perform better if each packet is of a single flit. In such scenario, there will be

no need for extension buffers and the possibilities for stalling a packet is reduced. In

evaluation part of this thesis, we used a width of 128bit for each link. So a question worth

105

asking here is, what is the lowest width of a link that can be employed in order to keep

the performance in a good range.

4.1.3 Use AI to find better set of loops

The total number of loops grows exponential with the network size. The presented design

follows a specific pattern that is applicable for any n×n network. Using machine learning

or deep learning is a great tool to explore design spaces and find hidden pattern in the

loops with a lower hop count.

4.1.4 Application mapping for RL networks

Unlike router-based network, RL employs loops where each loop act independently.

Applications perform better when they are connected in their own network. So, is it

possible to map an application on a loop for the purpose of enhancing its performance?

4.1.5 Multicast and broadcast

Something we have not discussed in this thesis is how to handle broadcast and multicast

packets. Loops in RL are all isolated and act independently. The naive way to address

broadcast/multicast packets is to send each broadcast/multicast packet on all loops. So,

can we use a limited number of loops in order broadcast/multicast a packet.

106

Bibliography

[1] http://ark.intel.com/products/95830/intel-xeon-phi-processor-7290-16gb-1 50-
ghz-72-core/.

[2] http://gem5.org.

[3] https://oeis.org/A140517.

[4] http://wccftech.com/intel-sc15-knights-landing-14nm-wafer-specification/.

[5] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj Kumar Jha. Garnet:
A detailed on-chip network model inside a full-system simulator. 2009 IEEE
International Symposium on Performance Analysis of Systems and Software, pages
33–42, 2009.

[6] Thomas William Ainsworth and Timothy Mark Pinkston. On characterizing per-
formance of the cell broadband engine element interconnect bus. In International
Symposium on Networks-on-Chip (NOCS), 2007.

[7] F. Alazemi, A. AziziMazreah, B. Bose, and L. Chen. Routerless network-on-chip. In
2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 492–503, Feb 2018.

[8] R. Arunachalam, E. Acar, and S. R. Nassif. Optimal shielding/spacing metrics for
low power design. In IEEE Annual Symposium on VLSI, 2003.

[9] Mario Badr and Natalie Enright Jerger. Synfull: synthetic traffic models capturing
cache coherent behaviour. In ISCA, 2014.

[10] L. A. Barroso and M. Dubois. The performance of cache-coherent ring-based
multiprocessors. In ISCA, 1993.

[11] Luiz Andre Barroso and Michel Dubois. Cache coherence on a slotted ring. In
ICPP, 1991.

107

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011.

[13] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, Bin Liu, A. Tran,
E. Adeagbo, and B. Baas. A 5.8 pj/op 115 billion ops/sec, to 1.78 trillion op-
s/sec 32nm 1000-processor array. In Symposium on VLSI Circuits, 2016.

[14] L. Chen and T. M. Pinkston. Nord: Node-router decoupling for effective power-
gating of on-chip routers. In MICRO, 2012.

[15] Bienia Christian. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, January 2011.

[16] Ian Cutress. Supercomputing 15: Intel’s knights landing xeon phi silicon on display.
November 2015.

[17] W. J. Dally and B. Towles. Route packets, not wires: on-chip interconnection
networks. In DAC, 2001.

[18] G. S. Delp, D. J. Farber, R. G. Minnich, J. M. Smith, and M. C. Tam. Memory as a
network abstraction. IEEE Network, 5(4), 1991.

[19] S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. Wang, G. H. Ahn,
G. Pitner, M. J. Kim, J. Bokor, C. Hu, H.-S. P. Wong, and A. Javey. MoS2 transistors
with 1-nanometer gate lengths. Science, 354(6308):99–102, oct 2016.

[20] Chris Fallin, Chris Craik, and Onur Mutlu. Chipper: A low-complexity bufferless
deflection router. In HPCA, 2011.

[21] Chris Fallin, Xiangyao Yu, Greg Nazario, and Onur Mutlu. A high-performance
hierarchical ring on-chip interconnect with low-cost routers. 2011.

[22] Paul Gratz, Changkyu Kim, Robert McDonald, Stephen W Keckler, and Doug
Burger. Implementation and evaluation of on-chip network architectures. In
International Conference on Computer Design. IEEE, 2006.

[23] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Express cube topologies for
on-chip interconnects. In HPCA, 2009.

108

[24] D. Harris and N. Weste. CMOS VLSI Design: A Circuits and Systems Perspective.
Pearson/Addison-Wesley, 2005.

[25] Yatin Hoskote, Sriram Vangal, Arvind Singh, Nitin Borkar, and Shekhar Borkar. A
5-ghz mesh interconnect for a teraflops processor. IEEE Micro, 2007.

[26] Jason Howard, S. Dighe, Y. Hoskote, Sriram Vangal, et al. A 48-core ia-32 processor
in 45 nm cmos using on-die message-passing and dvfs for performance and power
scaling. IEEE Journal of Solid-State Circuits, 2011.

[27] C-H Jan, Uddalak Bhattacharya, R Brain, S-J Choi, G Curello, G Gupta, W Hafez,
M Jang, M Kang, K Komeyli, et al. A 22nm soc platform technology featuring 3-d
tri-gate and high-k/metal gate, optimized for ultra low power, high performance and
high density soc applications. In Electron Devices Meeting (IEDM). IEEE, 2012.

[28] N. E. Jerger, L. S. Peh, and M. Lipasti. Virtual circuit tree multicasting: A case for
on-chip hardware multicast support. In ISCA, 2008.

[29] Nan Jiang, James Balfour, Daniel U Becker, Brian Towles, William J Dally, George
Michelogiannakis, and John Kim. A detailed and flexible cycle-accurate network-
on-chip simulator. In ISPASS. IEEE, 2013.

[30] John Kim, William J. Dally, and Dennis Abts. Flattened butterfly: A cost-efficient
topology for high-radix networks. In ISCA, 2007.

[31] A. K. Kodi, A. Sarathy, and A. Louri. ideal: Inter-router dual-function energy and
area-efficient links for network-on-chip (noc) architectures. In ISCA, 2008.

[32] J. Liu, L. R. Zheng, D. Pamunuwa, and H. Tenhunen. A global wire planning
scheme for network-on-chip. In International Symposium on Circuits and Systems
(ISCAS), 2003.

[33] S. Liu, T. Chen, L. Li, X. Feng, Z. Xu, H. Chen, F. Chong, and Y. Chen. Imr:
High-performance low-cost multi-ring nocs. IEEE Transactions on Parallel and
Distributed Systems, 27(6), 2016.

[34] NanGate, Inc. Nangate freePDK15 open cell library.

[35] S Natarajan, M Agostinelli, S Akbar, M Bost, A Bowonder, V Chikarmane, S Chouk-
sey, A Dasgupta, K Fischer, Q Fu, et al. A 14nm logic technology featuring 2
nd-generation finfet, air-gapped interconnects, self-aligned double patterning and a
0.0588 µm 2 sram cell size. In IEEE International Electron Devices Meeting, 2014.

109

[36] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif, and C. R.
Das. Vichar: A dynamic virtual channel regulator for network-on-chip routers. In
MICRO, 2006.

[37] D. Pamunuwa, J. Oberg, L. R. Zheng, M. Millberg, A. Jantsch, and H. Tenhunen.
Layout, performance and power trade-offs in mesh-based network-on-chip architec-
tures. In International Conference on Very Large Scale Integration, 2003.

[38] M. K. Papamichael and J. C. Hoe. The connect network-on-chip generator. Com-
puter, 48(12), 2015.

[39] Martin Radetzki, Chaochao Feng, Xueqian Zhao, and Axel Jantsch. Methods for
fault tolerance in networks-on-chip. ACM Comput. Surv., 46(1):8:1–8:38, July
2013.

[40] A. N. Udipi, N. Muralimanohar, and R. Balasubramonian. Towards scalable,
energy-efficient, bus-based on-chip networks. In HPCA, 2010.

[41] Sriram Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard Wilson,
James Tschanz, David Finan, Priya Iyer, Arvind Singh, Tiju Jacob, et al. An 80-tile
1.28 tflops network-on-chip in 65nm cmos. In ISSCC, 2007.

[42] Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting (Tim) Cheng, editors. Elec-
tronic Design Automation: Synthesis, Verification, and Test. Morgan Kaufmann
Publishers Inc., 2009.

[43] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F Brown III, and Anant
Agarwal. On-chip interconnection architecture of the tile processor. IEEE Micro,
2007.

[44] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, and
Katherine Yelick. The potential of the cell processor for scientific computing. In
Computing frontiers. ACM, 2006.

[45] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The splash-2 programs: Characterization and methodological con-
siderations. In ISCA, 1995.

110

APPENDICES

THE TWO TONTTI TUTUMLUNMUUTTUIN
US 20170250926A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2017 / 0250926 A1

Chen et al . (43) Pub . Date : Aug . 31 , 2017

(54) ROUTERLESS NETWORKS - ON - CHIP
@ (71) Applicant : Oregon State University , Corvallis ,

OR (US)
@ (72) Inventors : Lizhong Chen , Portland , OR (US) ;

Fawaz M . Alazemi , Corvallis , OR
(US) ; Bella Bose , Corvallis , OR (US)

(57)
@ (73) Assignee : Oregon State University , Corvallis ,

OR (US)

Publication Classification
(51) Int . CI .

H04L 12 / 933 (2006 . 01)
H04L 12 / 931 (2006 . 01)
G06F 17 / 50 (2006 . 01)

(52) U . S . CI .
CPC H04L 49 / 109 (2013 . 01) ; G06F 17 / 5077

(2013 . 01) ; H04L 49 / 40 (2013 . 01)
ABSTRACT

The disclosed technology concerns methods , apparatus , and
systems for designing and generating networks - on - chip
(“ NoCs ”) , as well as to hardware architectures for imple
menting such NoCs . The disclosed NoCs can be used , for
instance , to interconnect cores of a chip multiprocessor (aka
a “ multi - core processor ”) . In one example implementation ,
a wire - based routerless NoC design is disclosed that uses
deterministically specified wire loops to connect the cores of
the chip multiprocessor . The disclosed technology also com
prises network interface architectures for use in an NoC . For
example , a core can be equipped with a low - area - cost
interface that is deadlock - free , uses buffering sharing , and
provides low latency .

@ (21) Appl . No . : 15 / 445 , 736

(22) Filed : Feb . 28 , 2017

Related U . S . Application Data
(60) Provisional application No . 62 / 301 , 451 , filed on Feb .

29 , 2016 .

100

q . - . - 0
110 - 114

. . .

do . S . - . - 07 . 0 - . - . Ó

www

www m www

112 mm Ó - - - • • - . . .) OOOOO OOO OOO

111

Patent Application Publication Aug . 31 , 2017 Sheet 1 of 21 US 2017 / 0250926 A1

100 cm

eaq - -
w

110 mm namn 114
- - 0 1 - 0 - - ?

- .

-

.

*

112 - Só
FIG . 1A

102
O : - : - : · · G O · - - - · -

116
Q . - . - .

Öp - O . - O - . - . ó
0 - . - . 0 . - : - p . - . O . - - - o

>

LIO · - - . www www . me

FIG . 1B

112

Patent Application Publication Aug . 31 , 2017 Sheet 2 of 21 US 2017 / 0250926 A1

m

? Layer 1

Layer 2
00
Layer 3
Layer 4

PS . 2

113

Patent Application Publication Aug . 31 , 2017 Sheet 3 of 21 US 2017 / 0250926 A1

300 310
.

0 - 10 - 0 . .

W web www . .

invio

AvAvv - v . 4v - t4

- ain : on
v

. v .

4

- - AV - - - - d . . . www o
FIG . 3A

Ó - - - - - Ó
FIG . 3B

. - - . - -
FIG . 30

. i n re .

114

Patent Application Publication Aug . 31 , 2017 Sheet 4 of 21 US 2017 / 0250926 A1

. . - . - . - . - . - . - A

du . esc ÇmwQmwa mama
400 - -

onsu . hun
an Layer)
Ommmmmmmmmmmm . Layer 2

FIG . 4A

- - -
- -

410
- Om - -

0
0
o
0

é
Swano

0
0
o
0

0 - 0 - 0

Owonobamo
0

• o
Suunn @ wano OOOO

FIG . 4B FIG . 4C
414 416 418

- - - - Orbana
é OOOO 6 - - 66 - 6 - - 6 co

0 0 0
oo
0 0 ó

c ómunnen

Qubwa ww www
- - 0 - - -

0 0 0 0
0 0 0 0

0 .
Q - - 0 - 0 - -

O . . . @ u . no 0 0

FIG . 4D FIG . 4E FIG . 4F

0 0 0 0
g - - - - -
0 - - - - 0 - - - - - -
0 0 0 0

420 -

0 0 0 0
oooo
Q - - - - - - -
- - - - - - - - -

422
FIG . 4H

@ w . . . w . . w . woman
0 0

é o ob
07 - O - O . .

* -

FIG . 4G FIG . 41

115

Patent Application Publication Aug . 31 , 2017 Sheet 5 of 21 US 2017 / 0250926 A1

S40 ??? 512

?????????? ?

o o o o ??? ??? ? o o o o o 4 ??? ??????????????
o 3

?? . ??????? ???????????????? Loooooo ?????? o o o o
o o o o

???????????? ?????????
wwwwww ww 4

$ 3

3 .

514 ???? FIG . 5?
??? . FIG . 5? 516 ?

??????????????????? ? = = ?????????????????????????????????? ????????????????????????????
? ?

? ?? ?????? ????????? ?? ????????????? ? ?????? ?????? ????? ,
?

2 ?? ????????????????????????????????????
?? o = = = = = = =

FIG . 5C FIG . 5D

116

Patent Application Publication Aug . 31 , 2017 Sheet 6 of 21 US 2017 / 0250926 A1

612 min 510 mm 510 mm
*

* *

0 0 0 *

* *

* * *
*

0 0 was named ananasema 0 *

* * * *

*

*

0 0 0 WW
*

* *

*

0 0
*
*

*

0
0
0 Oooooo wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww * www wwwwwwwww . ca

0
0
0
©

potentiaalistications formationsting 0 wwwwwwwwwwwwwwwwwwwwwachsenden 0

0
0
0
©

0
0
© ??? A *

*

0 V wanadamu * * * * *

*

0 0 0
* *

@ *

* * * * * * * * * wwwwwwwwwwwww wa mananam
* * * * * * * * * * * * * * * *

614 watt FIG . 6A FIG . 6B 676
???? ???? ? ?? ?

0 Quwwwwwwwwwwwwwww memintig 0

0 ubwa www . immobbimbambing
. dan 0

wwwwwwww w www * * * * * wwwwwwwwwwwwwwwwww *

Women mmmmmmm 0

0 www hmon ul . . 0

wwwwwwwwwwwwwwwwwwwwwww 0 C

FIG . 6C FIG . 6D

117

Patent Application Publication Aug . 31 , 2017 Sheet 7 of 21 US 2017 / 0250926 A1

700 -
w miniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

momento
em

meio

ambiente

de

foto

Algorithm 1 : RLrec
Input L . H : the low and high numbers
Output : M : set of circles
begin

if LH then
return ()

Let M = 0
if H - L 1 then

M MUCL . H . L . H . clockwise)
M MUCL . H . L . H . anticlockwise)
return M

M - MUCL . H . LH anticlockwise)
for L1H1 do

M MUC (LH . L . I clockwise)
IMMUCL . H . 1 , H , clockwise) clockwise

for Lily M . 1 do
MEMUC (1 , 1 1 . L . H . clockwise)

M RLrec (L + 1 , H - 1)
Reverse and rotate for 90 % every circle in M ' and add
them to M "
return MUM "

do
.

3 - 5 . S .

same wwwww name
pobin

FIG . 7

118

Patent Application Publication Aug . 31 , 2017 Sheet 8 of 21 US 2017 / 0250926 A1

800

826 RRRRRRRR Injecion 827 Bjection
Network intoface

moooooo ooooo

812 820 810
Circles Table 830

Circle i

XX YA
Circle i

840

813 1 1

Axol of butter
En

* * *

YYY

FIG . 8

119

Patent Application Publication Aug . 31 , 2017 Sheet 9 of 21 US 201710250926 A1

900 902
(C CE Cycle -

? CTC) TTTTT) ? C?D?E O????
????? ?????

904 3

ooooooooM

Posepppy

FIG . .

3000 1002 … ?
??? 3 : 59 : 54

Cyc? CLE

TODAM

? 1? ???
| 1006 |

D - DD -
OS ?

? 10 . N

CE2 Celes - 3
?? ? II) 24 ASIA ?

FIG . 10

120

Patent Application Publication Aug . 31 , 2017 Sheet 10 of 21 US 2017 / 0250926 A1

100 min

unedow Mesh EVO MA A L

he base

si

Average latency (cycle is one

einer der er en trends partenaires restauradoration entretenimiento de entrega de notre trate da lontestato
wwwwwwwwwwwwwwwwwwwwwwwwww " wwwwwwwwwww www

The song * . * . * . .

Uniform
0 . 005

Enginn

0 . 06 0 . 17
Injection rate (flitsirodecycle

0 . 225

FIG . 11A

1102 mocnen

Mesh EVC - MR W AL
% rrr

EEEEEEEEEEEEE .

Average latency (cycles
8

hoogte besker

Transpose
0 W

0 . 005 0 . 00
Injection rate (flits / node / cycle)

FIG . 11B

121

Patent Application Publication Aug . 31 , 2017 Sheet 11 of 21 US 2017 / 0250926 A1

1104 am
wagowo Mash EVO S MR W AL

. - - . - . - . - . - . - . - . - . . - . - . - . - . - . . 1 . 1 . 1 . 1 . . . - . . 1 . . 1 . . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . .

se

Average latency (cycle)

& *

y

o

Bit reverse
outros problemer O p tional como mome

0 . 06
entre

0 . 115
} { c } } ?? Yale { { { { { ? ? } } } e }

FIG . 110
106m

to contienen lasin Eva MR AL .
we ' ve wwwwwwwwwwww wwwwwwwwwwwwwwwwwwwwwww rrr & r '

a

(ajoko) Kougie Deck
8 " " " " " " " " " " " " " * : - * . * *

* * * * * * * * * * * * * *

* * * vitaminokiseline kontingenternak sapiennikimitambo rrr internet bankini Hotspot
. . . . V .

0 . 005
.

0 . 06
Injection rate (flitsinode / cycle

.
0 . 736

FIG . 11D

122

US 2017 / 0250926 A1

VIDI :

raytrace

Anisopes

bodytrack

pentru alem
Water _ spatial

yepisal

58 : 51

Melon
GUONDOA

Hupe ,

qouºmi
001

Luisce
?

?

SOWIEC

Aug . 31 , 2017 Sheet 12 of 21

TTTTTTTTTTTTTTT
13000) Coolel añolday

*

*

$ 7X1

* * * W * 0138

* * * * * * * * * * * * * * * * * *

* *

* *

* *

* * * * * * *

* *

* * * *

* * * * *

Patent Application Publication

00Z?

123

1202 mm

Patent Application Publication

08

v

Mesh EVO

MA AL

8X8

.

* 11
Sogo) foule Dowany

Aug . 31 , 2017 Sheet 13 of 21

water spadal
Water _ nsquare

bames
blackscholas

Anaouo
lacesim

iluzidanimato

radiosity
radix
raytrace
sWapiian : :

Votrend

Frta

ocuytrack

GL ' O13

US 2017 / 0250926 A1

124

Patent Application Publication

1204 cm

&

.

.

.

.

.

.

.

.

.

. .

.

.

.

. . . .

.

Mesh EVO

MR WAL

16x16

.

.

.

.

.

.

.

. .

.

.

* - * - - * - * - * - * - - - - - - - - - - - - - - - - - - -

& &
Average laleridy (cycles)

& & a

LOKAKLELEGALGERI
Aug . 31 , 2017 Sheet 14 of 21

Water spatial
water . . square

barnes
blackscholes

olesky
lacesin

fluidanirnata
iu _ CD

luncb
radiosity
radix
raytrace
swaptions
d

f = tty

FIG . 12C

US 2017 / 0250926 A1

125

Patent Application Publication Aug . 31 , 2017 Sheet 15 of 21 US 2017 / 0250926 A1

AAAAAAAAAAAAAA

X

RS3

s :

FIG . 13

i

2006 % 3xcoxy

1300
MRWXQUARKA . KADA MOTOR WARS

126

Patent Application Publication Aug . 31 , 2017 Sheet 16 of 21 US 2017 / 0250926 A1

XIII 9829

mi 08602

Bufferless
FIG . 14

28516 pm

Mesh In 1875

1400

127

Patent Application Publication Aug . 31 , 2017 Sheet 17 of 21 US 2017 / 0250926 A1

1500 mm

Wolun
30 ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . * * . * . * * . * . * .

. . . 12 : 24

* * * * * * * * * * *

junoo doll abe JAV
* . ' . .

. oda a
8x8 19x16

Opimal Mesh IMA SRL

FIG . 15A 1502 mange
36 .

Hotspot
: : : : : : : : :

*

junoo doll abejony
. »

.

. . "

. . . ww .
4x4

* Optimal mn mesh SMA SRL

FIG . 15B

128

Patent Application Publication Aug . 31 , 2017 Sheet 18 of 21 US 2017 / 0250926 A1

1504 mm
. * . * . . * . * . * . * . * . . * . * . * . * . * . . * . * . * . * . * . . * . * . * . * . * . . * . * . * . * . * . * . * . . * . * * . * . * . * . * . * * . * . * . * . * . * * . * * . * . * * . * . * . * . * * . * . * . * . * . * . * . * . . * * . * . * . * . * . * * . . * . * . * . * . * . . * . * . * . * . * . . * . * . * . * . * . * . * . * . * . * . * . * . * . * * . * * . * . * . * .

Bit reverse
mimi ni mimi ni nini in

Front

R wroommon women junoo doh abejony
2 ss &

mimi ni mimi mimi ni mimi nini kini mimi ni mimi nini

4x4 8x8 16X16

* Optimal mesh * MR * RL

FIG . 15C
500mg

*

Transpose
30 wwwwwwwwwwwwwwwww wwwww

rrrrrrrrrrrrrrrrr

Average Hop count

os 8 con .
w www

4X4 8x8 16x16

* Optimal mesh IMR WAL

FIG . 15D

129

Patent Application Publication Aug . 31 , 2017 Sheet 19 of 21 US 2017 / 0250926 A1

1600 mm

1610 mm
INPUT PARAMETERS DESCRIBING A
SIZE OF A TOPOLOGICAL MESH OF
NODES , THE NODES OF THE MESH
CORRESPONDING TO PROCESSING

CORES OF THE MULTI - CORE
PROCESSOR

1612 GENERATE A WIRING LAYOUT FOR THE
NETWORK - ON - CHP USING A
RECURSIVELY APPLIED PATH
GENERATION PROCEDURE

1614 -

OUTPUT THE WIRING LAYOUT

FIG . 16

130

Patent Application Publication Aug . 31 , 2017 Sheet 20 of 21 US 2017 / 0250926 A1

1700

1710 www

GENERATE DESIGN DATA
SPECIFYING WIRING PATHS OF A
ROUTERLESS NETWORK - ON - CHIP
CONFIGURED TO INTERCONNECT
MULTIPLE PROCESSING CORES

WITH ONE ANOTHER

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

1712 anni

GENERATE DESIGN DATA FOR
NETWORK INTERFACES OF THE

NETWORK - ON - CHIP , THE
NETWORK INTERFACES

FACILTATING INJECTION OF A
NETWORK PACKET INTO THE
NETWORK - ON - CHIP FROM A

SOURCE PROCESSING CORE AND
EJECTION OF THE NETWORK

PACKET FROM THE NETWORK - ON
CHIP AT A DESTINATION CORE ww

FIG . 17

131

Patent Application Publication Aug . 31 , 2017 Sheet 21 of 21 US 2017 / 0250926 A1

www

MORINIO COMPUTER SYSTEM 1800 COMMUNICATION
CONNECTION (S) 1870

w
O O . COOK FOR US BUCO OUR

MORONIONO 1830
oooooooooooooooooooooooooooooo 0000000000000000000000000000002 OOOOOOOOOOOOOOOOOOOOOO0000000000000000000000000000000010101010

MOHON in

win INPUT DEVICE (S) 1850 HONORONHO
CENTRAL

PROCESSING
UNIT 1810

YYYYYYY
GRAPHICS
OR CO

PROCESSING
UNT 1815 HOORONDO winzi 1

ORODHON iwimia
OUTPUT DEVICE (S) 1860 ONIONO

mimi . Wie MEMORY
1820

MEMORY
1825 inimiinirininiwiwiwininiiiiiiiiiiiiiiiiiii

OKROIDIO oooooo * * * oo ooo * oo ooooo * * * YYYYYYYYYYYY 010100000000000OOOOOOOOOOOOO
výýýý

HONONOHO yyyyyy wir wines STORAGE 1840
CHORDIONOW tortortent was carries water to the open source to restore online resim orientamento wwwwwwwwwwww ww

POON 1101010 OOOOOOOOOOOOOOOOOOOOOOOOOO O OO

SOFTWARE 1880 IMPLEMENTING ONE OR MORE
TECHNIQUES DESCRIBED HEREIN

FIG . 18

132

US 2017 / 0250926 A1 Aug . 31 , 2017

ROUTERLESS NETWORKS - ON - CHIP

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U . S . Provi
sional Application No . 62 / 301 , 451 , entitled “ LOW - LA
TENCY ROUTERLESS NETWORK - ON - CHIP DESIGN ”
and filed on Feb . 29 , 2016 , which is hereby incorporated
herein by reference .

FIELD

generate design data for the NoC for a particular CMP or
multi - core processor design (e . g . , as a part of a behavioral
synthesis tool that generates HDL data , a logic synthesis
and / or place - and - route tool that generates gate - level netlists ,
a physical synthesis tool that generates physical layouts
(e . g . , GDSII data) , or any other suitable EDA tool) . In this
regard , the innovations can be implemented as a method
(e . g . , a NoC design method , a multicore processor chips , a
many - core processor) , as part of a computing system con
figured to perform the method , or as part of computer
readable media storing computer - executable instructions for
causing a processing device (e . g . , a circuit , such as a
microprocessor or microcontroller) , when programmed
thereby , to perform the method . Using the design data
generated from an EDA tool implementing the disclosed
techniques , mask - level models can ultimately be produced ,
masks can be printed , and the final integrated circuit can be
fabricated (e . g . , using suitable lithography techniques) .
[0008] . The foregoing and other objects , features , and
advantages of the disclosed technology will become more
apparent from the following detailed description , which
proceeds with reference to the accompanying figures .

[0002] This application concerns networks - on - chip
(“ NoCs ”) that are used to interconnect cores of a chip
multiprocessor .

SUMMARY
[0003] The disclosed technology concerns methods , appa
ratus , and systems for designing and generating networks
on - chip (" NoCs ") , as well as to hardware architectures for
implementing such NoCs . The disclosed NoCs can be used ,
for instance , to interconnect cores of a chip multiprocessor
(also referred to as a “ multi - core processor ”) . The disclosed
methods , apparatus , and systems should not be construed as
limiting in any way . Instead , the present disclosure is
directed toward all novel and nonobvious features and
aspects of the various disclosed embodiments , alone or in
various combinations and subcombinations with one
another .
[0004] In general , an NoC connects multiple cores of a
chip - multiprocessor (“ CMP ') (also referred to as a “ multi
core processor ”) . The efficiency of NoCs can greatly affect
the performance and cost of a CMP . An NoC may use
on - chip routers , but such routers demand high power con
sumption and area .
0005 In this disclosure , architectures that , among other
things , reduce or eliminate routers from the design are
disclosed . For instance , in one example implementation , a
routerless (“ RL ”) NoC design is disclosed that is wire - based
(e . g . , solely wire - based) . For instance , by utilizing wiring
resources of an NoC effectively , one can form multiple
circular paths (e . g . , wiring paths that form a loop and that
typically have a rectangular shape) to interconnect cores
(e . g . , all cores) on a CMP without routers . Also disclosed
herein are memory - and resource - efficient techniques for
identifying and / or specifying the circular paths . For
instance , one such technique is a fast , efficient recursive
algorithm where every pair of cores shares at least one
circular path .
[0006] The disclosed technology also comprises network
interface architectures for use in an NoC . For example , a
core can be equipped with a low - area - cost interface that
provides low latency (e . g . , 1 cycle per hop latency) . Further ,
in some cases , the circular paths (e . g . , all circular paths)
related to a respective core pass through its interface .
Moreover , in certain embodiments , and in the favor of
reducing the area and power , deadlock - free buffer sharing
techniques are provided such that each input port has a small
packet size buffer and / or a set of available long packet size
buffers to be shared among input ports .
[0007] The innovations can be implemented as part of an
NoC hardware architecture (e . g . , on a CMP or multi - core
processor) . The innovations can also be implemented as part
of an electronic design automation (“ EDA ”) tool used to

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIGS . 1A - 1B are schematic block diagrams of a
4x4 topology of nodes in which several example circular
paths (circles) , in accordance with the disclosed technology ,
are depicted .
[0010) FIG . 2 is a schematic block diagram illustrating the
layers for an 8x8 mesh , where each layer is labeled .
[0011] FIGS . 3A - C are schematic block diagrams showing
a 2x2 mesh topology as well as a clockwise and counter
clockwise circle for the topology .
[0012] FIGS . 4A - I are schematic block diagrams showing
a 4x4 mesh topology as well as various circles for connect
ing nodes of the topology to one another in accordance with
the disclosed technology .
[0013] FIGS . 5A - D are schematic block diagrams show
ing a 6x6 mesh topology as well as various circles for
connecting nodes of the topology to one another in accor
dance with the disclosed technology .
[0014] FIGS . 6A - D are schematic block diagrams show
ing a 8x8 mesh topology as well as various circles for
connecting nodes of the topology to one another in accor
dance with the disclosed technology .
[0015] FIG . 7 shows example pseudocode for a technique
that generates node - connecting circles for an arbitrary NoC
design .
[0016] FIG . 8 is a schematic block diagram of an example
network interface with exemplary components .
[0017 FIG . 9 shows schematic block diagrams illustrating
how flow control units can loop in a circle for four incre
mental clock cycles in accordance with one example
embodiment .
[0018] FIG . 10 shows schematic block diagrams illustrat
ing how a packet of three flow control units can be injected
into an example embodiment of the interface .
[0019] FIGS . 11A - D show plots illustrating the latency
and throughput details for various experiments performed
comparing the disclosed design techniques with other tech
niques .
[0020] FIGS . 12A - C show plots illustrating the latency
performance of the disclosed design techniques relative to
other techniques using various benchmarks .

133

US 2017 / 0250926 A1 Aug . 31 , 2017

[0030] As used in this application and in the claims , the
singular forms “ a , ” “ an , ” and “ the ” include the plural forms
unless the context clearly dictates otherwise . Additionally ,
the term “ includes ” means " comprises . ” Further , as used
herein , the term “ and / or ” means any one item or combina
tion of any items in the phrase .

II . Introduction to the Disclosed Technology

[0021] FIGS . 13 show plots illustrating the power con
sumption of the disclosed design techniques relative to other
techniques using various benchmarks .
[0022] FIG . 14 is an image showing the layout and area
differences of the routers and interfaces for the various tested
designs .
10023) FIGS . 15A - D show plots illustrating the average
hop count of the disclosed design techniques relative to
other techniques for various mesh topologies .
[0024] FIG . 16 is a flow chart showing a generalized
example embodiment for implementing an NoC generation
technique according to the disclosed technology .
[0025] FIG . 17 is a flow chart showing another general
ized example embodiment for implementing an NoC gen
eration technique according to the disclosed technology .
[0026] FIG . 18 illustrates a generalized example of a
suitable computer system in which the described innovations
may be implemented .

DETAILED DESCRIPTION

I . General Considerations
[0027] Disclosed below are representative embodiments
of methods , apparatus , and systems for generating routerless
networks - on - chip (“ NoCs ") as well as to hardware archi
tectures for implementing such NoCs . The disclosed meth
ods , apparatus , and systems should not be construed as
limiting in any way . Instead , the present disclosure is
directed toward all novel and nonobvious features and
aspects of the various disclosed embodiments , alone or in
various combinations and subcombinations with one
another . Furthermore , any features or aspects of the dis
closed embodiments can be used in various combinations
and subcombinations with one another . For example , one or
more method acts from one embodiment can be used with
one or more method acts from another embodiment and vice
versa . Further , the various innovations can be used in
combination or separately . The disclosed methods , appara
tus , and systems are not limited to any specific aspect or
feature or combination thereof , nor do the disclosed embodi
ments require that any one or more specific advantages be
present or problems be solved .
[0028] Although the operations of some of the disclosed
methods are described in a particular , sequential order for
convenient presentation , it should be understood that this
manner of description encompasses rearrangement , unless a
particular ordering is required by specific language set forth
below . For example , operations described sequentially may
in some cases be rearranged or performed concurrently .
Moreover , for the sake of simplicity , the figures may not
show the various ways in which the disclosed methods can
be used in conjunction with other methods .
[0029] Various alternatives to the examples described
herein are possible . For example , some of the methods
described herein can be altered by changing the ordering of
the method acts described , by splitting , repeating , or omit
ting certain method acts , etc . The various aspects of the
disclosed technology can be used in combination or sepa
rately . Different embodiments use one or more of the
described innovations . Some of the innovations described
herein address one or more of the problems noted in the
background . Typically , a given technique / tool does not solve
all such problems .

[0031] Networks - on - Chip (“ NoC ”) are becoming an
increasingly significant component of chip multiprocessor
(“ CMP ”) or multi - core processor designs . Generally speak
ing , the NoC is the backbone that facilitates communication
among multiple cores . With NoCs , processing cores can be
effectively interconnected on a single chip . Similar to com
puter networks , NoCs directly affect many performance and
cost factors of a CMP . In fact , an NoC can have a great
impact on electrical and physical properties (such as power
and area) of a CMP design . For instance , the power con
sumption of an NoC on a CMP can be 10 % ~ 36 % a highly
undesirable proportion . See Hoskote et al . , “ A 5 - GHz Mesh
Interconnect for a Teraflops Processor , ” IEEE Micro , vol .
27 , no . 5 , pp . 51 - 61 (September October 2007) ; Howard et
al . , “ A 48 - Core IA - 32 Processor in 45 nm CMOS Using
On - Die Message - Passing and DVFS for Performance and
Power Scaling , ” IEEE Journal of Solid - State Circuits , vol .
46 , no . 1 , pp . 173 - 183 (January 2011) . Further , with con
tinuous advancements in processing technologies and higher
clock frequencies , CMP power is increasingly becoming a
major concern . Consequently , new NoC design approaches
that work efficiently and effectively to achieve both high
performance and with lower area cost are becoming ever
more desirable .
[0032] Traditionally , there have been two types of NoCs :
bus - based and router - based . A bus - based NoC has a very
simple design . In this type of system , cores are attached to
a bus that facilitates communications among the cores . This
system functions well for few cores ; however , as one
attaches more cores to the bus , the system ' s performance
degrades significantly . One of the main reasons is the
distance between cores : the more cores attached to the bus ,
the longer the length of the bus . Hence , bus - based NoCs do
not scale well with the number of nodes .
[0033] Router - based NoCs use routers , which are attached
to each core . A router is a complex and relatively large
component that must be carefully designed . With routers , a
desired hop count is achieved by directing traffic appropri
ately through their shortest paths . This is typically attained
by complex router designs and routing algorithms . For
example , a flow control unit (" flit ”) has to pass through four
stages on a conventional router (specifically , routing com
putation , VC allocation , switch allocation , and switch tra
versal) to correctly determine its output port . Those stages
require a flit to traverse a router for several clock cycles
which , as a result , affects the flit ' s latency . Moreover , a
router comprises several components , such as buffers and
crossbars , that contribute to the router ' s area and power
consumption . For example , 28 % of the total power and 17 %
of the die area are devoted to routers on the Intel Terascale
chip . See Hoskote et al . , " A 5 - GHz Mesh Interconnect for a
Teraflops Processor , ” IEEE Micro , vol . 27 , no . 5 , pp . 51 - 61
(September October 2007) . Notably , such area and power
requirements will only be higher as more cores are added to
the CMP

134

US 2017 / 0250926 A1 Aug . 31 , 2017

[0034] In this disclosure , example embodiments of a
routerless NoC design are described . In certain examples , a
new NoC design approach is disclosed that intelligently uses
available wiring resources that have previously been under
utilized in router - based design due to their commitment to
routers . Embodiments of the disclosed technology are driven
by the appreciation that the data on an NoC is ultimately
transferred by wires . A wire is the elemental part of any
digital circuit , and its function is to transport a signal from
one point to another . With wires , components (such as
transistors , gates , flip - flops , and the like) can communicate
and exchange data and , as a result , be integrated into more
complex components , such as multiplexer , buffers , and even
routers .
[0035) In certain example approaches of the disclosed
technology , wires are used to connect cores in predefined
circular paths . In particular implementations , each circular
path is isolated from the others and all paths are arranged
such that every pair of cores has a path . This predefinition
and isolation of paths reduces or eliminates the need for
routers and , hence , produces a savings in power consump
tion and area . Furthermore , in certain examples , the circular
paths are intelligently placed on the NoC in order to achieve
a desirable average hop count . Example of a recursive
techniques for generating such circles are also disclosed
herein .
[0036] Additionally , in certain embodiments of the dis
closed technology , the cores (e . g . , each core) are attached to
the circular paths using a network interface that allows the
sharing of buffer resources among circles passing through
the interface . Unlike router - based NoCs , the network inter

width and space between two adjacent wires . The pitch size
is one of the principle factors in determining the number of
available wires in each layer . In modern technology nodes ,
several metal layers with different thicknesses and minimum
pitches are available . These physical differences between
metal layers also result in different electrical characteristics
(such as resistance and capacitance) and give designers an
avenue for meeting their design constraints (such as delay on
critical nets) by switching between different layers .
[0038] Designers are also confronted with other chal
lenges when designing integrated circuits , such as CMPs .
For instance , one of the challenging issues in interconnect
design in modern technologies is crosstalk noise . In general ,
there are two main techniques to cope with crosstalk noise :
(a) spacing ; and (b) shielding . For the spacing technique , the
interconnect designer tries to keep the coupling noise at a
level which is tolerable by the target process and applies a
desired space between wires for each layer . See , e . g . ,
Arunachalam et al . , " Optimal shielding / spacing metrics for
low power design , ” IEEE Computer Society Annual Sym
posium on VLSI , pp . 167 - 172 (2003) . For the shielding
technique , the designer typically reduces the crosstalk noise
between two adjacent wires by inserting another wire (which
is usually connected to the ground or supply voltage)
between them . See id . In comparison with the spacing
technique , the shielding technique has more area overhead
and it reduces the number of wires in each layer , but it can
almost entirely suppress crosstalk noise .
f0039] Table 1 below shows statistical information for a
set of example many - core processors , including the wiring
resources available in two respective metal layers .

TABLE 1
Intel Teraflop KiloCore Xeon Phi , Knights Landing Intel IA - 32 Message - Passing

Processor (SCC)
48 80 1000 72

ManyCore
Processor
Number of
Cores
Die area
Technology
Interconnect
Inter - router
interconnects
Layer

(21 . 72 mm x 12 . 64 mm) 275 mm ? (26 . 5 mm x 21 . 4 mm) 567 . 1 mm ?
Intel65 nm Intel45 nm

8 Metal Layers 9 Metal Layers
Metal Pitch # Wire Metal Pitch # Wire
Layer Layer

(8 mm x 8 mm) 64 . 0 mm ? (31 . 9 mm x 21 . 4 mm) 683 mm ?
IBM 32 nm Intel14 nm

11 Metal Layers 13 Metal Layers
Metal Pitch # Wire Metal Pitch # Wire
Layer Layer

M4 280 nm M4 240 nm 100 nm M4 80 nm 2 Layers
1X Metal

80000
wires

22571
wires
19151
wires

44583
wires
38214
wires

133750
wires
102884
wires

M5 M5 M5 330 nm 280 nm M5 104 nm

Total Wires 41722 wires (40K) 82797 wires (82K) 80000 wires (80K) 236634 wires (236K)

face designs disclosed herein dramatically reduce power and
area requirements and allow die areas to accommodate more
processing and storage units .

III . Technical Observations and Challenges
[0037] As process technologies scale down to smaller
dimensions , more and more features and devices can be fit
onto a silicon surface . With this increasing trend in the
number of available features and devices on the silicon
surface , each technology node comes with more and more
metal layers to meet the growing demand for integration . For
example , typical many - core processor chips , such as Xeon
Phi , Knights Landing or KiloCore , are fabricated using a
process technology with 11 to 13 metal layers . Further , each
metal layer has a pitch size that defines a minimum wire

[0040] As mentioned , a more conservative approach to
cope with the coupling noise is to use a shielding technique .
The number of wires in Table 1 was calculated taking into
account the area overhead of using a shielding technique to
suppress the crosstalk noise Minimum metal pitches are
used to estimate the number of wires for each layer .
[0041] As is revealed in Table 1 , there has been a trend
toward increasing the available number of wires with tech
nology scaling and more advanced multi - core processors .
Unfortunately , wires are underutilized in router - based NoCs .
As the number of wires is relatively large , this opens new
opportunities for new design directions that utilize more
wires . An NoC that is smartly design based on wires allows
routers to be removed , resulting in a routerless NoC .
0042] A few earlier works have suggested the removal of
routers . However , those works suffered from many factors ,

135

US 2017 / 0250926 A1 Aug . 31 , 2017

such as scalability . For instance , a point - to - point design to
connect every core with the other is infeasible . For example ,
each node on a 4x4 mesh NoC would have 16x15 = 240 input
and output links . This approach clearly requires a large
number of buffers and results in an extremely costly NoC . A
shared bus , or conventional bus , is another approach . How
ever , the number of nodes that can be attached to such buses
is limited due to noise and collision factors . As more nodes
are attached to a bus , the more noise and collisions occur ,
thus reducing the overall performance . Ring NoCs are
another possible approach to connecting a few cores . See ,
e . g . , Barroso et al . , " The performance of cache - coherent
ring - based multiprocessors . " ACM SIGARCH Computer
Architecture News , vol . 21 . no . 2 . ACM , (1993) ; Delp et al . ,
“ Memory as a network abstraction , ” IEEE Network , 5 (4) ,
pp . 34 - 41 (1991) ; and Barroso et al . , “ Cache Coherence on
a Slotted Ring , " ICPP (1) , pp . 230 - 237 (1991) . Like the
shared bus approach , however , this approach suffers from
scalability and performance issues . As the number of cores
on a CMP increases , rings become very slow and no longer
scalable .
[0043] Recently , a multi - ring NoC approach called inte
grated multiple rings (IMR) was introduced . See Liu et al . ,
" IMR : High - Performance Low - Cost Multi - Ring NoCs , ”
IEEE Transactions on Parallel and Distributed Systems ,
27 (6) , pp . 1700 - 1712 (2016) . IMR deploys a set of multiple
rings such that each ring is to be shared by a specific set of
cores . Also , packets are not allowed to switch between rings .
However , the ring set is generated by an evolutionary
algorithm , which takes a long time to produce a good ring
set . Further , such evolutionary - generated ring sets are prone
to producing large rings that affect packet latency , hop count ,
and power consumption . In addition , the design proposes
require a large set of buffers to assure deadlock avoidance .
[0044] Buffers can also be helpful to an NoC design .
Although buffers contribute negatively on area and power
resources , they can help eliminate many issues such as
deadlock . Recently , a bufferless technique was introduced to
reduce power consumption . See , e . g . , Fallin et al . , “ CHIP
PER : A low - complexity bufferless deflection router , ” IEEE
17th International Symposium on High Performance Com
puter Architecture , pp . 144 - 155 (February 2011) . Bufferless
designs , however , suffer from numerous disadvantages . For
example , bufferless designs suffer from livelock , deflection ,
and packet reassembly issues . The designs , however , do
realize some gains in the savings of power consumption and
area . Even though buffers consume some amounts of power ,
other routers components also consume significant amounts
of power (e . g . 45 %) regardless if buffers exist or not . See ,
e . g . , Chen et al . , “ Nord : Node - router decoupling for effec
tive power - gating of on - chip routers , ” Proceedings of the
2012 45th Annual IEEE / ACM International Symposium on
Microarchitecture , pp . 270 - 281 (December 2012) .
[0045] Therefore , by eliminating routing components and
reducing buffer size , an NoC design can realize a substantial
reduction to the consumption of static power . Embodiments
of the disclosed technology realize both of these objectives .
For instance , certain embodiments of the disclosed technol
ogy reduce buffer size by allowing different components to
share buffers . Further , by reducing or eliminating routers , a
significant savings in power consumption and area can be
gained . However , the challenge is how to link cores in the

NoC without losing the performance advantages and path
flexibilities of a router while still providing a scalable
approach .
[0046] As noted , there is an increasing trend in the number
of available wires in advanced many - core processors . There
fore , one could speed up data transfer from one component
to another by utilizing more wires . However , linking a
component with more wires increases the component ' s size
and power consumption . For example , if two routers are
connected by 256 bit links , then doubling the number of
wires on a link would , at least , double the crossbar size for
each router . Thus , adding more wires to link routers is not an
efficient approach .
[0047] Further , conventional NoC designs have limited
capabilities to use the large amount of wires due to the power
and area requirements of routers with wider ports . For
example , a 4x4 mesh with 64 bit flit size needs a die of
around 2 . 16 mmx2 . 36 mm in a 45 nm technology node . See
Park et al . , “ Approaching the theoretical limits of a mesh
NoC with a 16 - node chip prototype in 45 nm SOI , " Pro
ceedings of the 49th Annual Design Automation Conference ,
pp . 398 - 405 (June 2012) . For this die size and based on the
pitch size listed in Table 1 for a 45 nm technology node , two
metal layers (M4 and M5) can provide 8357 wires in
cross - section (4500 = 2 . 16 mm / (2x240 nm) wires in metal
layer 4 , pitch size is doubled in order to take into account the
area overhead of shielding technique , and 3857 = 2 . 16 mm /
(2x280) nm wires in metal layer 5) . However , a 4x4 mesh
with a 64 bit flit size can only use (4x64) 256 wires in the
cross - section . This means that the mesh NoC design can
only utilize 4 % of all available wire resources in only two
metal layers . On the other hand , increasing the flit size to
enhance the wire resource utilization results in more buffers
and a larger crossbar in routers , resulting in higher power
consumption and area overhead . Therefore , new NoC
designs that can better utilize the large amount of available
wires with low power and area are highly desirable for
current and future multi - core processors .
[0048] Embodiments of the disclosed technology imple
ment a wired - based NoC by forming multiple unidirectional
circular paths , also referred to as “ circles " . These circles are
wiring loops that connect two or more nodes to one another .
In particular implementations , every pair of nodes on the
NoC shares at least one circle . Using wires , one can form a
number of circles such that routers are no longer required ,
thus facilitating a routerless NoC .
[0049] It should be noted that a “ circle ” as discussed
herein is not strictly circular in shape , but rather traverses a
set of two or more nodes along a path that forms a closed
loop and is therefore circular in nature . Typically , though not
necessarily , the nodes traversed by a circle are arranged (or ,
as part of the circuit design process , considered to be
arranged) in an arrangement of columns and rows . For this
reason , the disclosure will sometimes refer to a particularly
numbered row or column (or a " lowest ” or “ highest " row or
column) , which references a row numbered consecutively
from top to bottom (or , equivalently , bottom to top) or a
column numbered consecutively from left to right (or ,
equivalently , right to left) . This arrangement is typically
described as an nxn mesh topology , where n is a positive
integer , or an mxn mesh topology , where m and / or n are
positive integers . For ease of illustration , such arrangements
are shown herein rectilinearly . The actual arrangement or
final physical layout , however , need not be strictly rectilin

136

US 2017 / 0250926 A1 Aug . 31 , 2017

ear . Instead , the references to “ columns ” , “ rows ” , and “ mesh
topologies ” discussed herein encompass equivalent logical
relationships between nodes (or cores) . Further , it should be
understood that the terms “ rows ” and “ columns " encompass
the equivalent conversion to “ columns ” and “ rows ” .
[0050] Theoretically speaking , the number of circles on a
nxn mesh topology is abundant and grows rapidly with n .
For example , in a 4x4 topology of nodes , the total number
of possible circles is 426 . FIGS . 1A and 1B are schematic
block diagrams of a 4x4 topology 100 , 102 of nodes in
which several example circles (110 , 112 , 114 , 116) are
depicted . Further , in FIGS . 1A and 1B as well as the other
figures depicting nxn mesh topologies , each node of the
mesh represents a connection point of a core of the many
core processor design to the NoC . Moreover , for bigger
meshes , the number of circles are numerous . In particular ,
Table 2 shows the total number of circles for various mesh
sizes .

TABLE 2
of directed rings in n x n mesh ET

vau AWN
26

426
18698

2444726
974300742

1207683297862

[0051] For an 8x8 mesh topology , there are more than 1013
circles , not to mention combinations . While it is easy to
connect all the nodes with lengthy circles , such as Hamil
tonian circles (an example of which is shown as circle 116
in FIG . 1B) , such circles greatly increase the average hop
count and , as a result , are not recommended for NoCs .
[0052] To generate a set of circles that minimizes or
otherwise significantly reduces the hop count is very chal
lenging due to large number of choices . Embodiments of the
disclosed technology are directed to tools and techniques for
addressing these difficulties by generating circles using
deterministic techniques that also significantly reduce the
average hop count set of circles . Particular implementations
use a fast , recursive algorithm for determining the circles .

contain the node pass through the interface . Although the
wiring resources are large , attaching too many wires to an
interface would increase the interface ' s buffer and , eventu
ally , the demand for the power and area becomes undesir
able . Therefore , for the purpose of controlling the power and
area requirements , certain embodiments limit the maximum
number of circles overlapping at any link to n , where n is the
dimension size of the mesh topology .
(0055] In the next subsections , several example embodi
ments are presented to show how circles are generated
followed by a formal description of an illustrative non
limiting algorithm that recursively generates the circles .
Details of example network interfaces and hardware imple
mentations are then introduced and discussed .
[0056] A . Circle Generation Examples
[0057] In this subsection , example techniques for gener
ating circles for 2x2 , 4x4 , 6x6 , and 8x8 mesh topologies are
described . In general , circles generated for an nxn mesh are
denoted by Mr .
[0058] In accordance with one exemplary technique , the
mesh is split into layers . FIG . 2 is a schematic block diagram
200 illustrating the layers for an 8x8 mesh , where each layer
is labeled . As shown in FIG . 2 , Layer 1 is a 2x2 mesh ,
Layers 1 & 2 form a 4x4 mesh , Layers 1 & 2 & 3 combined
result in a 6x6 mesh , and finally all layers form the original
8x8 mesh . Due to the structure of layers , circles generated
for an n - 2xn - 2 mesh can be a subset of circles generated for
nxn mesh topology . Furthermore , FIG . 2 illustrates that the
layers are concentric in nature . For purposes of this disclo
sure , let M , denote the set of circles on an nxn mesh and L ;
be the set of circles generated specifically for Layer i . More
details are discussed below in the examples .
[0059] i . 2x2 Mesh Topology
10060] This is the basic case . It has one layer and two
circles , as shown in FIGS . 3A - 3C . More specifically , FIG .
3A is a schematic block diagram of the overall 2x2 mesh
topology 300 ; FIG . 3B illustrates clockwise circle 310 on the
topology ; and FIG . 3C illustrates counterclockwise circle
320 . Both circles are included in Mz = Lj . Notice that , with
M2 , the mesh is interconnected and the maximum number of
circles overlapping at any link is 2 . Also , the average hop
count is 0 . 333 .
[0061] ii . 4x4 Mesh Topology
[0062] In the case of the 4x4 mesh topology , the mesh has
two layers . For example , FIG . 4A is a schematic block
diagram of the overall 4x4 mesh topology 400 and shows
that the topology has 2 layers : Layer 1 and Layer 2 . For
Layer 2 , the set of circles L , is generated and depicted by
circles 410 , 412 , 414 , 416 , 418 , 420 , 422 , 424 in FIGS .
4B - 41 . Notice that the two circles 410 , 414 in FIGS . 4B and
4D connect nodes (which represent respective cores and
their respective interfaces) on Layer 2 with all nodes on
Column 2 . Similarly , nodes on Column 3 are connected to
Layer 2 nodes by the circles 412 , 416 shown in FIGS . 4C
and 4E . Then , the nodes on Row 1 are connected to Row 2
nodes by the circle 418 , the nodes on Row 2 are connected
to Row 3 by the circle 420 , and the nodes Row 3 are
connected to Row 4 by the circle 422 . Finally , the perimeter
nodes are connected by the largest circle 424 , which also is
oriented in the opposite direction of circles 410 , 412 , 414 ,
416 , 418 , 420 , 422 (clockwise vs . counterclockwise or vice
versa depending on the directionality of the circles 410 , 412 ,
414 , 416 , 418 , 420 , 422) . Therefore , circles in L , connect
nodes on Layer 2 with every other node in the mesh .

IV . Example Approaches to Routerless NOC Design
[0053] This section presents examples of a routerless
(“ RL ”) design for an nxn mesh topology . Embodiments of
the disclosed approach utilize the abundant wiring resource
by intelligently placing a set of circles that interconnects
nodes on the mesh . Further , in some implementations , the set
of circles is generated by a fast and recursive algorithm . In
particular implementations , the circles (e . g . , all circles) are
unidirectional , have a rectangular shape , and have the same
width of wires . As a result of the circles , the paths from a
source to a destination are predefined ; consequently , once a
packet is pushed to a downstream circle , it remains on the
same circle until the destination ejects it . Hence , the role of
a router is no longer required and can therefore be elimi
nated .
[0054] Further , in some embodiments , a node (e . g . , each
node) on the mesh is connected to its corresponding core
(e . g . , a processing core of a multi - core processor) with a
network interface to access the NoC such that all circles that

137

US 2017 / 0250926 A1 Aug . 31 , 2017

L denotes the lowest row / column and H denotes the highest
row / column . Using L and H , the number of layers is

x = f * = £ * 11 - 12
In subsequent recursive calls , RLrec is called with L = L + 1
and H = H - 1 to work on the next layer . The first set of circles
generated by RLrec is for the boarder layer (layer x) . The
example algorithm begins with

C (L , H , L , H , anticlockwise) (1)
which overlaps with layer x . The procedure C (r? , r2 , C1 , C2 ,
d) draws two lines on rows ry , r , and two lines on columns
C1 , C , and generates a circle with direction d from the
resultant rectangular shape . FIG . 6A shows an example
result for C (0 , 7 , 0 , 7 , anticlockwise) . Moreover , the next
generated circles are

C (L , H , L , i , clockwise) & C (L , H , I , H , clockwise) (2)
where L + 1sisH - 1 and correspond to the circles in FIGS . 6B
and 6C . The pair of circles C (L , H , L , i , clockwise) & C (L ,
H , i , H , clockwise) overlaps with layer x and column i .
Notice that , every column , other than L , H , is overlapped by
two circles only . The circles generated so far allow every
node on layer x share at least one circle with every column .
In other words , each node on layer x shares at least a circle
with every other node on the mesh . Also , every link on layer
x is overlapped by

1 + H - 1 - (L + 1) + 1 = H - L = n - 1
from (1) from (2)

Moreover , in this illustrated embodiment , exactly four
circles are overlapping at every link (which corresponds to
a set of wires linking components (such as nodes) to one
another) on Layer 2 and , in like manner , every other link (not
on Layer 2) is overlapped by two circles . Links on Layer 2
can no longer allow more circles to overlap as the maximum
is four , whereas links on Layer 1 have room for two more
circles . Therefore , M , can be used to interconnect all nodes
on Layer 1 (as Layer 1 is a 2x2 mesh) with at most two
circles overlapping at any link . The final set is M4 = L2 U
M2 = L2 U L , where the average hop count is 2 . 93 .
10063] iii . 6x6 Mesh Topology
10064] For the 6x6 topology , there are 3 layers in this
mesh . In a similar fashion as above , circles in L , are
generated for Layer 3 as illustrated in FIGS . 5A - D . For ease
of illustration , FIG . 5 depicts related circles together in
composite images . FIG . 5A , for example , shows a largest
circle 510 traversing the perimeter nodes along one direction
(either clockwise or counterclockwise) . FIG . 5B shows the
circles 512 that extend from column 2 incrementally toward
column 5 . In the illustrated embodiment , the circles 512 are
oriented in the opposite direction of circle 510 . FIG . 5C
shows the circles 514 that extend from column 5 decremen
tally toward column 2 . In the illustrated embodiment , the
circles 514 are oriented in the opposite direction of circle
510 . FIG . 5D shows the circles 516 that form incremental
circles for adjacent pairs of rows and that are also oriented
in the opposite direction of circle 510 . Again , all nodes on
Layer 3 are connected to every other node in the mesh by
circles in Lz . Links on Layer 3 are overlapped by six circles
and all other links are overlapped by two circles . Therefore ,
M4 can be used to interconnect all nodes on layers 2 and 1 .
In certain embodiments , for the purpose of improving the
average hop count , every circle in M , is reversed and rotated
90° . This new set is denoted by M4 . As a result , Mo = Lz U
M ' A = L , U (L , UL) ' with an average hop count of 5 . 07 .
Note that , in the previous example , it was not necessary to
reverse and rotate the circles in My because M2 = M2 .
100651 iv . 8x8 Mesh Topology
[0066] Similar to the earlier examples , the circles can be
generated using the outer layer (Layer 4) to generate L4 . For
ease of illustration , FIG . 6 depicts related circles together in
composite images . FIG . 6A , for example , shows a largest
circle 610 traversing the perimeter nodes along one direction
(either clockwise or counterclockwise) . FIG . 6B shows the
circles 612 that extend from column 2 incrementally toward
column 7 . The circles 612 can be oriented in the opposite
direction of circle 610 . FIG . 6C shows the circles 614 that
extend from column 7 decrementally toward column 2 . The
circles 614 can be oriented in the opposite direction of circle
610 . FIG . 6D shows the circles 616 that form incremental
circles for adjacent pairs of rows and that are also oriented
in the opposite direction of circle 610 . Then , using earlier
results , M , can be defined as :

Mg = L4 U M6 = L4 U (L3 U MA) = L4 U (L3 U (L2U
L))

where the average hop count is 7 . 32 .
[0067] B . Formal Description
[0068] For an nxn mesh topology , circles for the routerless
design can be recursively generated . One example of such an
algorithm (termed “ RLrec ") is illustrated in example
pseudocode 700 shown in FIG . 7 . In the illustrated example ,
the algorithm begins by generating circles for the outer layer ,
say layer i , and then recursively generating circles for layer
i - 1 and so on until the basic case (Layer 1) is reached or the
layer has a single node .
[0069] The example algorithm takes two integers L and H
as input parameters with initial values 1 and n , respectively .

circles and every link on columns L + 1 . . . , H - 1 is
overlapped by exactly two circles . There are n - 2 pairs of
circles generated by (2) . Observe that , rows L + 1 , L + 2 , . . .
, H - 1 are not yet utilized by any circle . The last set of circles
generated is

C (1 , i + 1 , L , H , clockwise)
where LsisH - 1 . This set is similar to circles in FIG . 6D . The
two circles C (i , i + 1 , L , H , clockwise) & C (i + 1 , i + 2 , L , H ,
clockwise) overlap at row i + 1 only and all circles in this set
use each link on layer x only once . Therefore , links on layer
X are now overlapped by n circles and every other link is
overlapped by two circles . Finally , the algorithm recursively
calls RLrec with L = L + 1 and H = H - 1 and then reverses and
rotates for 90° . Calling RLrec with L = L + 1 and H = H - 1 will
ignore layer x and generate circles for the outer layer of an
n - 2xn - 2 mesh (layer x - 1) . Notice that , initially L = 1 and
H = n and therefore , H - 1 - (L + 1) + 1 = n - 2 (the dimension size
of the mesh .)
10070] The number of circles generated by RLrec can be
easily calculated due to its simplicity and recursive nature by
the following recurrence function :

F (n) = 1 + 2x (n – 2) + n - 1 + F (n – 2) ,
from (2) from (3) from (1)

where F (2) = 2 and F (1) = F (0) = 0 .
[0071] C . Example Network Interfaces
[0072] In embodiments of the disclosed technology , a
node in the NoC is part of many circles where such circles

138

US 2017 / 0250926 A1 Aug . 31 , 2017

allow the node to communicate with every other node in the
NoC . In other words , the circles avail the node with pre
defined paths to all destinations . In particular embodiments ,
a node communicates with the circles through a network
interface .
[0073] FIG . 8 is a schematic block diagram 800 of an
example network interface with exemplary components .
With reference to FIG . 8 , each circle is represented by an
input port (shown by representative input ports 810 , 811 for
circles i and circle j , respectively) , an output port (shown by
representative output ports 812 , 813 for circles i and circle
j , respectively) , and a small buffer of B 21 flits (shown by
representative buffers 820 , 821 for circles i and circle i ,
respectively) . The flit size is fixed and the smallest packet in
the NoC has B , flits (e . g . , the circle ' s buffer can accommo
date the smallest packet) . The network interface also
includes injection port 826 and one or more ejection ports
827 for receiving packets from the associated core and
outputting packets to the associated core , respectively . In
addition , in certain embodiments , the network interface
comprises a pre - calculated table 830 (e . g . , a look - up table)
that maps destinations with the circles to reach those desti
nations . Moreover , a pool of one or more buffers 840
(“ expansion buffers ”) is available to allow a circle ' s buffer
to be expanded . Each buffer in this pool is of BEXB21 flits
and can be used by at most one circle at a time and is denoted
by extension buffer (EXB) . Moreover , the largest packet in
the NoC has at most B + BYB flits . Notice that , in the
illustrated embodiment , each circle is completely isolated
from the others . Therefore , if a packet is injected into a
circle , it will remain in the same circle until ejection .
[0074] In the following paragraphs , an example of how the
interface operates is described .
[0075] When a packet p of n flits is injected into the
interface , the available circles that can reach the packet ' s
destination are identified . In particular example embodi
ments , a circle is considered available if one of the following
conditions holds :
[0076] 1 . The buffer is empty and either : (a) nsBc ; or (b)
n - B , and an EXB is available ; or
[0077] 2 . The buffer is not empty and has xx0 free flit slots
and the destination of the head flit is the current node and
either : (a) nsx ; (b) the buffer is extended by an EXB and has
at least n free slots in total ; or (c) the buffer is not extend by
an EXB , n2Bc , nsBEXB + x , and an EXB is available .
[0078] Once the list of available circles is known , the
shortest circle to the destination , say to inject p is selected .
While the interface is injecting the head flit of p , it will
attach an EXB to & if n2B , and is not already attached to
an EXB . Moreover , the output port of ? will be busy
injecting the n flits of p for n clock cycles . During those n
clock cycles , any incoming flit through input port of & is
enqueued in the buffer . Notice that C has sufficient space to
accept n flits while p is being injected . If no circle is
available , p will be blocked or stalled at injection port and
will try again in the next cycle .
10079] One of the reasons to consider a circle as not
available for injection is if the destination of the head flit in
its buffer is not the current node . In this case , and in
particular embodiments , the circle forwards the head flit
through the output port directly regardless of the interface or
the NoC state . The only case to stall such a flit is if the output
port of the circle is in use for injection prior to the flit ' s
arrival to the head of the circle ' s buffer . Moreover , if a

circle ' s buffer is extended by an EXB , then this EXB will be
tied with the circle until the circle ' s buffer and the EXB are
both empty . In this case , the EXB will be freed and returned
to the pool .
[0080] The discussion above concerns how an interface
can inject , stall , and forward a packet . The remaining action
on a packet is ejection . In particular example embodiments ,
the ejection process can begin as soon as the head flit of a
packet p becomes the head flit of a circle ' s buffer in the
destination ' s interface . In the same cycle , the interface
begins ejecting flits p , one flit per cycle . Once p is fully
ejected , the interface will wait for another packet to eject . If
multiple packets reach the head of multiple circle ' s buffers ,
all such packets will compete for the ejection link and the
oldest packet will win (though other prioritizations are also
possible , including the packet being associated with a flag or
other indication of a highest priority packet) . Packets that
lost their chance for ejection will be stalled and try again in
the next cycle as long as their circle ' s buffer is not full . In
the case of a full buffer , the packet is forwarded to the next
interface . If the interface has multiple ejection ports , then it
can eject in parallel m packets , where m is less than or equal
to the number of circles in the interface . If more than m
packets are competing to eject , and in certain embodiments ,
the oldest m packets wins (though other prioritizations are
also possible , including the packet being associated with a
flag or other indication of a highest priority packet) .
[0081] Notice that in the example embodiments described
above , the described operational actions do not depend on
the state of a neighboring interface nor the NoC . In addition ,
the interface is always welcoming incoming flits from its
neighbors . Allowing the interface to always accept a flit
helps the NoC to avoid deadlocks as described in the next
subsection .
[0082] i . Deadlocks
[0083] Deadlocks occur when each member of a group is
holding a resource and each member is waiting for another
resource , held by another member , to complete its task .
Examples of the disclosed network design are not credit
based ; instead , each interface works solely by itself , and
each of its ports can accept an incoming flit regardless of its
state or NoC state . Moreover , the isolation of circles elimi
nates many problems introduced by " head - of - line ” blocking .
FIG . 9 shows schematic block diagrams 900 , 902 , 904 , 906
showing how flits can loop in a circle for four incremental
clock cycles in accordance with one example embodiment .
In every cycle , flits are forwarded to the next interface , and
it is the interface ' s responsibility to assure space availability
for incoming flits without any prior information . FIG . 10
shows schematic block diagrams 1000 , 1002 , 1004 , 1006
showing how a packet of three flits can be injected into an
example embodiment of the interface as described above . In
FIG . 10 , notice that flits A , B , C are blocked in the middle
interface 1020 until the injection process is completed .

V . Evaluation Methodology
[0084] Embodiments of the disclosed technology were
extensively evaluated using Booksim , a cycle - accurate
simulator , for synthetic traffic . See Jiang et al . , “ A detailed
and flexible cycle - accurate network - on - chip simulator , "
2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS) , pp . 86 - 96 (April
2013) . Although synthetic workloads may be practical , they
do not capture the essence and actual behavior of real - world

139

US 2017 / 0250926 A1 Aug . 31 , 2017

applications . To help simulate real - world applications , the
Synfull application was used . Synfull has a synthetic traffic
generation methodology that better reflects an actual appli
cation ' s behaviors . See Badr et al . , " SynFull : synthetic
traffic models capturing cache coherent behavior , " 2014
ACM / IEEE 41st International Symposium on Computer
Architecture (ISCA) , pp . 109 - 120 (June 2014) . Synfull uses
a variety of PARSEC and SPLASH - 2 benchmarks and is
based on 16 - core multi - threaded applications . See Bienia ,
“ Benchmarking modern multiprocessors , " New York : Princ
eton University , Ph . D . Thesis (January 2011) ; Woo et al . ,
“ The SPLASH - 2 programs : Characterization and method
ological considerations , ” ACM SIGARCH Computer Archi
tecture News , vol . 23 , no . 2 , pp . 24 - 36 (July 1995) . Synfull
also integrates well with Booksim . For the tests disclosed
herein , Synfull and Booksim are used to evaluate power and
area .
10085) For the purpose of evaluation , an exemplary router
less (“ RL ”) design as described herein (comprising circles
generated according to the technique illustrated in FIG . 7
and having a network as in FIG . 8) was compared against
three NoC designs , including a traditional mesh design
(denoted as mesh) , EVC design (as described in Kumar et
al . , “ Express virtual channels : towards the ideal intercon
nection fabric , ” ACM SIGARCH Computer Architecture
News , vol . 35 , no . 2 , pp . 150 - 161 (2007) , and an IMR
design .
[0086] The configuration details for each design are as
follows . For the mesh design , the router was configured with
two virtual channels (VCs) per link with three flit buffers per
VC . Also , the router ' s latency was minimized by setting
look - ahead routing with speculative switch allocation , and
setting the number of cycles for each pipeline stage to one .
Such a configuration allowed for the optimization of router
performance and made it very competitive with the least
amount of area for buffers . Furthermore , the EVC design had
the same configuration as the mesh design except that one
extra VC was dedicated to implement the express channels .
[0087] The IMR design was implemented in Booksim .
The interface had one injection link and one ejection link
and every other link was equipped with a full packet - size
buffer . Additionally , the per - hop latency for every interface
was one clock cycle . The maximum number of links
between a pair of nodes was 16 . In this regard , the limit was
set to n to allow a fair comparison of the RL design with
IMR .
[0088] For the RL design , the network interface was
implemented such that every link had one flit - size buffer and
two extension full packet - size buffers for injection purposes
and two ejection links . After several experiments , it was
found that having one ejector degraded performance , but
having two ejectors greatly enhanced performance For more
than two ejectors , the performance gain was negligible .
Similarly , with one extension buffer , the injection link
suffered from being blocked for a long time and hence
performance was affected negatively . With two extension
buffers , significant performance improvements were real
ized . Desirably , the design has as many extension buffers as
the input ports , but this may affect interface area and static
power negatively . Finally , the circles were generated by the
technique illustrated in FIG . 7 .
10089] The width of each link for the mesh and EVC
designs is 256 bits , while for the RL and IMR designs it is
128 bits . From the link width , the maximum flits per packet

can be determined . The control packet is of 64 bit and the
data packet is of 576 bit . Therefore , the control packet was
a one flit packet for all NoCs , while the data packet in the
mesh and EVC designs was a three flits packet , and for the
RL and IMR designs it is a five flits packet .
[0090] A . Synthetic
[0091] In this section , results are described from simulat
ing the above NoCs in Booksim using four synthetic patterns
(uniform random , transpose , bit reverse , and hotspots for 8
hotspot nodes) on an 8x8 mesh topology . In each test , the
simulator ran for 100 , 000 cycles to collect latency and
throughput statistics at different injection rates . The ratio of
long and short packets was 2 to 8 . The initial injection rate
for all the runs is 0 . 005 and it was incremented by 0 . 005 until
reaching the throughput .
[0092] . The latency and throughput detail are shown in
plots 1100 , 1102 , 1104 , and 1106 of FIGS . 11A - D for a
variety of injection rates for each traffic pattern . Notice that
the RL design performed normally under all injection rates
in all traffic patterns . This gives an indication that the RL
design is a deadlock - free approach with flit size buffers at
input links and few extension buffers . Moreover , the RL
design outperformed all other NoCs in latency and through
put . The average packet latency in uniform traffic pattern
was 21 . 2 , 14 . 9 , 10 . 5 , and 8 . 3 cycles for the mesh , EVC ,
IMR , and RL designs , respectively . Other traffic patterns had
similar trends . Therefore , the RL design outperformed all
other NoCs in latency and provided an average improvement
of 59 % , 43 % , and 25 % over the mesh , EVC , and IMR
designs , respectively .
[0093] Regarding throughput , a similar trend was
observed . For example , the throughput for the hotspot
pattern was 0 . 08 , 0 . 05 , 0 . 06 , and 0 . 125 (per flit / node / cycle)
for the IMR , RL , mesh , and EVC nodes , respectively . It was
also observed that the RL design had the highest throughput
and performed very well for the bit reverse , hotspot , and
transpose patterns . The RL design , on average , enhanced the
throughput by 94 % , 187 % , and 68 % over the mesh , EVC ,
and IMR designs , respectively .
[0094] B . PARSEC and SPLASH - 2
[0095] Using Synfull , all benchmark traffic patterns were
generated and the latency was evaluated for over 500 , 000
cycle for 4x4 , 8x8 , and 16x16 mesh topologies . For 8x8
topologies , Booksim was interfaced with 4 Synfull pro
cesses where each Synfull process is mapped randomly to 16
nodes such that a node is mapped to only one Synfull
process . Similarly , for 16x16 topologies , Booksim was
interfaced with 16 Synfull processes and , again , each Syn
full process is mapped randomly to 16 nodes .
[0096] FIGS . 12A - C shows plots 1200 , 1202 , and 1204 of
the PARSEC and SPLASH - 2 benchmarks evaluated by
Synfull for the RL , IMR , conventional mesh , and EVC
designs . As shown by the plots 1200 , 1202 , 1204 , the RL
design provided better performance over all other NoCs in
all topologies and all the benchmarks . For example , for a
16x16 topology , the average latency for the RL design was
20 . 1 flits / node / cycle , whereas the average latency for the
mesh , EVC , and IMR designs was 37 . 01 , 26 . 2 , 34 . 2 flits /
node / cycle , respectively . In general , the latency of the RL
design was only 52 % , 35 % , and 34 % of the latency of the
mesh , EVC , and IMR designs , respectively . Further , the
average number of cycles where both extension buffers were
free is more than 99 % of the total number of cycles . This

140

US 2017 / 0250926 A1 Aug . 31 , 2017

have a long length . Notably , the RL design has only a
slightly higher average hop count than the optimal mesh .
10104] NoCs will continue to accommodate more and
more processing cores . Certain designs , for example ,
already propose 1000 cores . Therefore , scalability is vital for
any NoC approach to help further support such high - core
designs . As shown and described above , NoC designs in
accordance with the disclosed technology are very effective
in terms of latency and throughput for higher dimensional
mesh topologies . Moreover , the power consumption and
area occupancy exhibited by embodiments of the disclosed
routerless network interfaces are extremely low when com
pared to conventional mesh routers or IMR designs , even for
high mesh topologies .

gives the potential to neglect one of the extension buffer to
further reduce the area of RL network interface .
10097] C . Power and Area
[0098] To evaluate the power and area of the RL design ,
a Verilog version of an example RL interface as disclosed
herein and shown in FIG . 8 was implemented , and the
functionality of the interface was verified using extensive
Modelsim simulations . For comparison , Verilog versions of
other routers and interfaces were also implemented . For the
mesh design , a parametrized RTL implementation provided
by Hoskote et al . , " A 5 - GHz Mesh Interconnect for a
Teraflops Processor , ” IEEE Micro , vol . 27 , no . 5 , pp . 51 - 61
(September - October 2007) was used . Additionally , Synop
sys ' Design Compiler and Cadence ' s Encounter tools were
used for synthesis , and place and route was implemented
using the NanGate FreePDK 15 Cell Library (see NanGate ,
Inc , “ Nangate freePDK15 open cell library ') .
[0099] FIG . 13 is a plot 1300 showing the breakdown of
the routers ' and interfaces ' power consumption across the
benchmarks and normalized to the mesh design . All power
consumption shown in the plots is reported after place and
route using the NanGate FreePDK 15 Cell Library by
Cadence ' s Encounter . Activity factors for power measure
ments were obtained from the extensive simulation results .
The power measurements were decomposed into dynamic
power and static power . The dynamic power includes inter
nal power and switching power . The internal power is
consumed because of short circuit power while devices are
changing their state . On the other hand , the switching power
is consumed due to charging and discharging capacitive
output loads . Compared to the mesh design , and on the
average , the EVC design consumes 38 % more power , and
the IMR design has 20 % lower power consumption . The RL
design reduces the power consumption across the bench
marks by nearly 90 % . This tremendous power saving is
mainly due to the structure of the interface , which removes
power hungry components , such as crossbars , and reduces
the number of buffers .
[0100] The reported area for the mesh design was 45281
um ? and for EVC design was 60731 um? . The reported area
for the IMR design was 20930 um > , and the area for the RL
design was 6286 um ? . All the reported areas are core area
and they are reported by Cadence ' s Encounter after place
and route using the NanGate FreePDK 15 Cell Library .
[0101] FIG . 14 is an image 1400 showing the layout of the
routers and the interfaces for the various tested designs . The
layouts were generated by Cadence ' s Encounter after place
and route using the NanGate FreePDK 15 Cell Library . As
shown in FIG . 14 , the mesh design has a high area require
ment when compared to the IMR interface and bufferless
router . Using the IMR design , one can save about 53 % while
the bufferless router reduces the area by 37 % in comparison
with the mesh area . Furthermore , the RL interface can
improve the area even more than bufferless . That is , the RL
interface require less than 86 % area than the mesh design .
Therefore , the RL design allow to save a significant amount
of silicon area for processing and storage units .
[0102] D . Additional Observations
[0103] The average hop count for synthetic traffic patterns
was also evaluated . FIGS . 15A - D are plots 1500 , 1502 ,
1504 , 1506 showing the average hop count for the RL , IMR ,
and optimal Mesh designs for several traffic patterns . From
these plots , it can be observed that the IMR design has a high
average hop count because rings produced by their approach

VI . Overview of Example Embodiments
[0105] FIG . 16 is a flow chart 1600 showing a generalized
example embodiment for implementing an NoC generation
technique according to the disclosed technology . The par
ticular operations and sequence of operations should not be
construed as limiting , as they can be performed alone or in
any combination , subcombination , and / or sequence with one
another . Additionally , the illustrated operations can be per
formed together with one or more other operations . Still
further , the identified operations need not be performed by
a single software module , but can be implemented using
multiple modules or software tools , which collectively per
form the illustrated method . The example embodiment of
FIG . 16 can be performed , for example , by one or more
specialized electronic design automation (EDA) tools that
are adapted to perform the disclosed circuit design tech
niques (e . g . , an EDA design tool for generating a hardware
description of a network - on - chip configured to interconnect
a plurality of processing cores of a mutli - core processor) .
Such tool (s) can be used , for instance , as part of a circuit
design and / or manufacturing process and be implemented by
one or more computing devices as described above . The
example embodiments described with respect to or related to
FIG . 16 can be used to realize any one or more of the benefits
disclosed herein .
[0106] At 1610 , parameters that describe a size of a
topological mesh of nodes are input (e . g . , buffered into
memory or otherwise prepared for further processing) . In
this embodiment , the nodes of the mesh correspond to
processing cores of the mutli - core processor .
[0107] At 1612 , a wiring layout is generated for the
network - on - chip by applying a path generation procedure
that generates circular wiring paths connecting processing
cores of a first layer of the topological mesh , and that is then
recursively applied to generate circular wiring paths con
necting processing cores for one or more additional layers of
the topological mesh .
[0108] At 1614 , the wiring layout is output (e . g . , stored in
an output file that can then be used by one or more
downstream tools in the design and manufacturing flow of a
multi - core processor) . For instance , the wiring layout can be
a hardware description , such as a hardware - design - language
representation or a gate - level netlist .
[0109] In particular embodiments , the one or more addi
tional layers of the topological mesh are concentric and
interior to the first layer . In certain embodiments , the path
generation procedure generates the circular wiring paths
such that every pair of nodes of the topologic mesh share at
least one circular wiring path . In some embodiments , the

141

US 2017 / 0250926 A1 Aug . 31 , 2017

path generation procedure generates the circular wiring
paths for a respective layer of the topological mesh in a
deterministic fashion that minimizes hop count among the
circular wiring paths .
[0110] FIG . 17 is a flow chart 1700 showing a generalized
example embodiment for implementing an NoC generation
technique according to the disclosed technology . The par
ticular operations and sequence of operations should not be
construed as limiting , as they can be performed alone or in
any combination , subcombination , and / or sequence with one
another . Additionally , the illustrated operations can be per
formed together with one or more other operations . Still
further , the identified operations need not be performed by
a single software module , but can be implemented using
multiple modules or software tools , which collectively per
form the illustrated method . The example embodiment of
FIG . 17 can be performed , for example , by one or more
specialized electronic design automation (EDA) tools that
are adapted to perform the disclosed circuit design tech
niques (e . g . , an EDA design tool for generating a hardware
description of a network - on - chip configured to interconnect
a plurality of processing cores of a mutli - core processor) .
Such tool (s) can be used , for instance , as part of a circuit
design and / or manufacturing process and be implemented by
one or more computing devices as described above . The
example embodiments described with respect to or related to
FIG . 17 can be used to realize any one or more of the benefits
disclosed herein .
[0111] At 1710 , design data is generated specifying wiring
paths of a routerless network - on - chip configured to inter
connect the multiple processing cores with one another . In
some embodiments , the wiring paths are generated using a
deterministic wiring path selection procedure .
0112] At 1712 , design data is generated for network
interfaces of the network - on - chip , the network interfaces
facilitating injection of a network packet into the network
on - chip from a source processing core and ejection of the
network packet from the network - on - chip at a destination
core .
[0113] In particular embodiments , the one or more of the
network interfaces comprise extension buffers that are
shared among multiple input ports of the one or more
network interfaces . In some embodiments , the wiring paths
comprise a set of unidirectional wiring loops arranged so
that every pair of processing cores shares at least one of the
unidirectional wiring loops . In certain embodiments , the
wiring paths have a rectangular shape .
[0114] Further disclosed embodiments comprise inte
grated circuits implementing any of the disclosed technolo
gies . For instance , embodiments of the disclosed technology
are chip multiprocessors (or multi - core processors) . These
particular embodiments should not be construed as limiting ,
as they can include any combination , subcombination , and /
or combination of features as disclosed herein .
[0115) Particular embodiments include an integrated cir
cuit , comprising : a plurality of processing cores ; and a
network - on - chip subsystem configured to interconnect the
cores via a set of deterministically specified wiring circles .
In certain embodiments , the network - on - chip subsystem is
router - and - crossbar - free . In some embodiments , the plural
ity of cores are arranged in an nxn mesh topology having n
columns and n rows , and the wiring circles include a first set
of n - 2 circles and a second set n - 2 circles such that either
a . every column other than the lowest and highest column is

overlapped by only two circles of the first set and the second
set ; or b . every row other than the lowest and highest row is
overlapped by only two circles of the first set and the second
set . In certain embodiments , the plurality of cores are
arranged in an mxn mesh topology having m columns and
n rows , and the wiring circles include a first set of circles that
includes : (a) all nodes of the lowest column along a first side
of the circles and all nodes from respective incrementally
higher columns along a second side of the circles except for
the highest column ; (b) all nodes of the highest column
along a first side of the circles and all nodes from respective
incrementally lower columns along a second side of the
circles except for the lowest column ; b . all nodes of the
lowest row along a first side of the circles and all nodes from
respective incrementally higher rows along a second side of
the circles except for the highest row ; or c . all nodes of the
highest row along a first side of the circles and all nodes
from respective incrementally lower rows along a second
side of the circles except for the lowest row . In certain
embodiments , the plurality of cores are arranged in an mxn
mesh topology having m columns and n rows , the wiring
circles include a perimeter circle the includes all perimeter
nodes of the mesh topology and is configured to propagate
network data in a first direction , and the wiring circles
include a plurality of interior circles that at least partially
include nodes that are interior of the perimeter node and that
are configured to propagate network data in a second direc
tion opposite of the first direction . In some embodiments , the
wiring circles further include a sub - layer perimeter circle
that is concentric to the perimeter circle and that includes all
nodes along a perimeter of a layer of the mesh topology that
is interior to perimeter circle , and wherein the wiring circles
include a plurality of sub - layer interior circles that are
interior of the perimeter circle and that at least partially
include nodes that are interior of the sub - layer perimeter
circle . In certain embodiments , the network - on - chip subsys
tem further comprises a network interface configured to
implement a deadlock - free protocol for injecting and eject
ing flow control units to and from the network interface . In
some embodiments , the network - on - chip subsystem further
comprises a network interface for a respective core of the
integrated circuit , the respective core having network access
to a plurality of wiring circles connected to the network
interface , the network interface further comprising an exten
sion buffer that is shared among the plurality of wiring
circles . In certain embodiments , the network - on - chip sub
system further comprises a network interface comprising
one or more extension buffers configured to receive network
packets from a neighboring core as packets are being
simultaneously received by an injection port and output
from an ejection port of the network interface .

VII . Example Computing Environments
10116] FIG . 18 illustrates a generalized example of a
suitable computer system 1800 in which the described
innovations may be implemented . The example computer
system 1800 can be a server or computer workstation (e . g . ,
PC , laptop , tablet computer , mobile device , or the like) used
by a design engineer during the design and production of a
many - core processor .
[0117] With reference to FIG . 18 , the computer system
1800 includes one or more processing devices 1810 , 1815
and memory 1820 , 1825 . The processing devices 1810 , 1815
execute computer - executable instructions . A processing

142

US 2017 / 0250926 A1 Aug . 31 , 2017

puter - executable instructions , audio or video input or output ,
image data , or other data in a modulated data signal . A
modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal . By way of example , and not
limitation , communication media can use an electrical , opti
cal , RF , or other carrier .
[0122] The innovations presented herein can be described
in the general context of computer - readable media . Com
puter - readable media are any available tangible media that
can be accessed within a computing environment . By way of
example , and not limitation , with the computer system 1800 ,
computer - readable media include memory 1820 , 1825 , stor
age 1840 , and combinations of any of the above . As used
herein , the term computer - readable media does not cover ,
encompass , or otherwise include carrier waves or signals per
se .

device can be a general - purpose CPU , GPU , processor in an
ASIC , FPGA , or any other type of processor . In a multi
processing system , multiple processing units execute com
puter - executable instructions to increase processing power .
For example , FIG . 18 shows a CPU 1810 as well as a GPU
or co - processing unit 1815 . The tangible memory 1820 ,
1825) may be volatile memory (e . g . , registers , cache , RAM) ,
non - volatile memory (e . g . , ROM , EEPROM , flash memory ,
NVRAM , etc .) , or some combination of the two , accessible
by the processing device (s) . The memory 1820 , 1825 stores
software 1880 implementing one or more innovations
described herein , in the form of computer - executable
instructions suitable for execution by the processing device
(s) . The software 1880 can be , for example , an electronic
design automation (“ EDA ") design tool . For instance , the
EDA tool can be a behavioral synthesis tool configured to
generate an HDL description of any of the disclosed NoCs
or components (e . g . , a Verilog , System Verilog , or VHDL
description) , a logic synthesis and / or place - and - route tool
configured to generate a gate - level netlist (e . g . , from an
HDL description) for any of the of the disclosed NoCs or
components , a physical synthesis tool configured to generate
a geometric layout (e . g . , a GDSII or Oasis file) that can be
used to make a mask - level model form which masks can be
printed and the final integrated circuit fabricated . The soft
ware 1880 can also comprise other suitable EDA tools for
implementing the disclosed technology .
[0118] The computer system 1800 may have additional
features . For example , the computer system 1800 includes
storage 1840 , one or more input devices 1850 , one or more
output devices 1860 , and one or more communication con
nections 1870 . An interconnection mechanism (not shown)
such as a bus , controller , or network interconnects the
components of the computer system 1800 . Typically , oper
ating system software (not shown) provides an operating
environment for other software executing in the computer
system 1800 , and coordinates activities of the components
of the computer system 1800 .
[0119] The tangible storage 1840 may be removable or
non - removable , and includes magnetic disks , magnetic tapes
or cassettes , optical storage media such as CD - ROMs or
DVDs , or any other medium which can be used to store
information and which can be accessed within the computer
system 1800 . The storage 1840 stores instructions for the
software 1880 implementing one or more innovations
described herein .
[0120] The input device (s) 1850 may be a touch input
device such as a keyboard , mouse , pen , or trackball , a voice
input device , a scanning device , or another device that
provides input to the computer system 1800 . For video or
image input , the input device (s) 1850 may be a camera ,
video card , TV tuner card , screen capture module , or similar
device that accepts video input in analog or digital form , or
a CD - ROM or CD - RW that reads video input into the
computer system 1800 . The output device (s) 1860 include a
display device . The output device (s) may also include a
printer , speaker , CD - writer , or another device that provides
output from the computer system 1800 .
10121] The communication connection (s) 1870 enable
communication over a communication medium to another
computing entity . For example , the communication connec
tion (s) 1870 can connect the computer system 1800 to the
internet and provide the functionality described herein . The
communication medium conveys information such as com

[0123] The innovations can be described in the general
context of computer - executable instructions , such as those
included in program modules , being executed in a computer
system on a target real or virtual processor . Generally ,
program modules include routines , programs , libraries ,
objects , classes , components , data structures , etc . that per
form particular tasks or implement particular abstract data
types . The functionality of the program modules may be
combined or split between program modules as desired in
various embodiments . Computer - executable instructions for
program modules may be executed within a local or distrib
uted computer system .
[0124] The terms “ system ” and " device ” are used inter
changeably herein . Unless the context clearly indicates
otherwise , neither term implies any limitation on a type of
computer system or computer device . In general , a computer
system or computer device can be local or distributed , and
can include any combination of special - purpose hardware
and / or general - purpose hardware with software implement
ing the functionality described herein .
[0125] The disclosed methods can also be implemented
using specialized computing hardware configured to per
form any of the disclosed methods . For example , the dis
closed methods can be implemented by an integrated circuit
(e . g . , an ASIC such as an ASIC digital signal processor
(“ DSP ') , a GPU , or a programmable logic device (“ PLD ”)
such as a field programmable gate array (“ FPGA ”)) spe
cially designed or configured to implement any of the
disclosed methods .

VIII . Concluding Remarks
0126) In view of the many possible embodiments to
which the principles of the disclosed invention may be
applied , it should be recognized that the illustrated embodi
ments are only preferred examples of the invention and
should not be taken as limiting the scope of the invention .
What is claimed is :
1 . A computer - implemented method , comprising :
by a processor implementing an electronic design auto

mation (EDA) design tool , generating a hardware
description of a network - on - chip configured to inter
connect a plurality of processing cores of a multi - core
processor , wherein the generating comprises :
inputting parameters describing a size of a topological
mesh of nodes , the nodes of the mesh corresponding
to processing cores of the multi - core processor ;

143

US 2017 / 0250926 A1 Aug . 31 , 2017

generating a wiring layout for the network - on - chip by
applying a path generation procedure that generates
circular wiring paths connecting processing cores of
a first layer of the topological mesh and recursively
applying the path generation procedure to generate
circular wiring paths connecting processing cores for
one or more additional layers of the topological
mesh ; and

outputting the wiring layout .
2 . The method of claim 1 , wherein the one or more

additional layers of the topological mesh are concentric and
interior to the first layer .

3 . The method of claim 1 , wherein the path generation
procedure generates the circular wiring paths such that every
pair of nodes of the topologic mesh share at least one
circular wiring path .

4 . The method of claim 1 , wherein the path generation
procedure generates the circular wiring paths for a respec
tive layer of the topological mesh in a deterministic fashion
that minimizes hop count among the circular wiring paths .

5 . The method of claim 1 , wherein the hardware descrip
tion is a hardware - design - language representation or a gate
level netlist .

6 . One or more memory or storage devices storing com
puter - executable instructions which when executed cause
the computer to perform the method of claim 1 .

7 . A system , comprising :
a memory or storage device ; and
one or more processors , the one or more processors being

configured to implement an electronic design automa
tion (EDA) tool for generating an integrated circuit
design comprising multiple processing cores ;
generating design data specifying wiring paths of a

routerless network - on - chip configured to intercon
nect the multiple processing cores with one another ;

n columns and n rows , and wherein the wiring circles
include a first set of n - 2 circles and a second set n - 2 circles
such that either a . every column other than the lowest and
highest column is overlapped by only two circles of the first
set and the second set ; or b . every row other than the lowest
and highest row is overlapped by only two circles of the first
set and the second set .

15 . The integrated circuit of claim 12 , wherein the plu
rality of cores are arranged in an mxn mesh topology having
m columns and n rows , and
wherein the wiring circles include a first set of circles that

includes :
a . all nodes of the lowest column along a first side of the

circles and all nodes from respective incrementally
higher columns along a second side of the circles
except for the highest column ;

b . all nodes of the highest column along a first side of the
circles and all nodes from respective incrementally
lower columns along a second side of the circles except
for the lowest column ;

c . all nodes of the lowest row along a first side of the
circles and all nodes from respective incrementally
higher rows along a second side of the circles except for
the highest row ; or

d . all nodes of the highest row along a first side of the
circles and all nodes from respective incrementally
lower rows along a second side of the circles except for
the lowest row .

16 . The integrated circuit of claim 12 , wherein the plu
rality of cores are arranged in an mxn mesh topology having
m columns and n rows ,

wherein the wiring circles include a perimeter circle the
includes all perimeter nodes of the mesh topology and
is configured to propagate network data in a first
direction , and

wherein the wiring circles include a plurality of interior
circles that at least partially include nodes that are
interior of the perimeter node and that are configured to
propagate network data in a second direction opposite
of the first direction .

17 . The integrated circuit of claim 12 , wherein the wiring
circles further include a sub - layer perimeter circle that is
concentric to the perimeter circle and that includes all nodes
along a perimeter of a layer of the mesh topology that is
interior to perimeter circle , and
wherein the wiring circles include a plurality of sub - layer

interior circles that are interior of the perimeter circle
and that at least partially include nodes that are interior
of the sub - layer perimeter circle .

18 . The integrated circuit of claim 12 , wherein the net
work - on - chip subsystem further comprises a network inter
face configured to implement a deadlock - free protocol for
injecting and ejecting flow control units to and from the
network interface .

19 . The integrated circuit of claim 12 , wherein the net
work - on - chip subsystem further comprises a network inter
face for a respective core of the integrated circuit , the
respective core having network access to a plurality of
wiring circles connected to the network interface , the net
work interface further comprising an extension buffer that is
shared among the plurality of wiring circles .
20 . The integrated circuit of claim 12 , wherein the net

work - on - chip subsystem further comprises a network inter
face comprising one or more extension buffers configured to

and
generating design data for network interfaces of the

network - on - chip , the network interfaces facilitating
injection of a network packet into the network - on
chip from a source processing core and ejection of
the network packet from the network - on - chip at a
destination core .

8 . The system of claim 7 , wherein one or more of the
network interfaces comprise extension buffers that are
shared among multiple input ports of the one or more
network interfaces .

9 . The system of claim 7 , wherein the wiring paths
comprise a set of unidirectional wiring loops arranged so
that every pair of processing cores shares at least one of the
unidirectional wiring loops .

10 . The system of claim 7 , wherein the generating com
prises applying a deterministic wring path selection proce
dure .

11 . The system of claim 7 , wherein the wiring paths all
have a rectangular shape .

12 . An integrated circuit , comprising :
a plurality of processing cores ; and
a network - on - chip subsystem configured to interconnect

the cores via a set of deterministically specified wiring
circles .

13 . The integrated circuit of claim 12 , wherein the net
work - on - chip subsystem is router - and - crossbar - free .

14 . The integrated circuit of claim 12 , wherein the plu -
rality of cores are arranged in an nxn mesh topology having

144

US 2017 / 0250926 A1 Aug . 31 , 2017

receive network packets from a neighboring core as packets
are being simultaneously received by an injection port and
output from an ejection port of the network interface .

* * * * *

145

Routerless Networks-on-Chip

Fawaz Alazemi, Arash Azizimazreah, Bella Bose, Lizhong Chen
Oregon State University, USA

{alazemif, azizimaa, bose, chenliz}@oregonstate.edu

ABSTRACT
Traditional bus-based interconnects are simple and easy to
implement, but the scalability is greatly limited. While
router-based networks-on-chip (NoCs) offer superior scal-
ability, they also incur significant power and area overhead
due to complex router structures. In this paper, we explore
a new class of on-chip networks, referred to as Routerless
NoCs, where routers are completely eliminated. We propose a
novel design that utilizes on-chip wiring resources smartly to
achieve comparable hop count and scalability as router-based
NoCs. Several effective techniques are also proposed that
significantly reduce the resource requirement to avoid new
network abnormalities in routerless NoC designs. Evaluation
results show that, compared with a conventional mesh, the
proposed routerless NoC achieves 9.5X reduction in power,
7.2X reduction in area, 2.5X reduction in zero-load packet
latency, and 1.7X increase in throughput. Compared with a
state-of-the-art low-cost NoC design, the proposed approach
achieves 7.7X reduction in power, 3.3X reduction in area,
1.3X reduction in zero-load packet latency, and 1.6X increase
in throughput.

1. INTRODUCTION
As technologies continue to advance, tens of processing

cores on a single chip-multiprocessor (CMP) has already been
commercially offered. Intel Xeon Phi Knight Landing [12] is
an example of a single CMP that has 72 cores. With hundreds
of cores in a CMP around the corner, there is a pressing need
to provide efficient networks-on-chip (NoCs) to connect the
cores. In particular, recent chips have exhibited the trend to
use many but simple cores (especially for special-purpose
many-core accelerators), as opposed to a few but large cores,
for better power efficiency. Thus, it is imperative to design
highly scalable and ultra-low cost NoCs that can match with
many simple cores.

Prior to NoCs, buses have been used to provide on-chip
interconnects for multi-core chips [7, 8, 14, 17, 37, 38]. While
many techniques have been proposed to improve traditional
buses, it is hard for their scalability to keep up with modern
many-core processors. In contrast, NoCs offer a decentral-
ized solution by the use of routers and links. Thanks to the
switching capability of routers to provide multiple paths and
parallel communications, the throughput of NoCs is signifi-
cantly higher than that of buses. Unfortunately, routers have
been notorious for consuming a substantial percentage of
chip’s power and area [20, 21]. Moreover, the cost of routers
increases rapidly as link width increases. Thus, except for a
few ad hoc designs, most on-chip networks do not employ
link width higher than 256-bit or 512-bit, even though addi-
tional wiring resources may be available. In fact, our study
shows that, a 6x6 256-bit Mesh only uses 3% of the total
available wiring resources (more details in Section 3).

The high overhead of routers motivates researchers to de-
velop routerless NoCs that eliminate the costly routers but
use wires more efficiently to achieve scalable performance.
While the notion of routerless NoC has not been formally
mentioned before, prior research has tried to remove routers
with sophisticated use of buses and switches, although with
varying success. The goal of routerless NoCs is to select a
set of smartly placed loops (composed of wires) to connect
cores such that the average hop count is comparable to that
of conventional router-based NoCs. However, the main road-
blocks are the enormous design space of loop selection and
the difficulty in avoiding deadlock with little or no use of
buffer resources (otherwise, large buffers would defeat the
purpose of having routerless NoCs).

In this paper, we explore efficient design and implementa-
tion to materialize the promising benefits of routerless NoCs.
Specifically, we propose a layered progressive method that
is able to find a set of loops that meet the requirement of
connectivity and the limitation of wiring resources. The
method progressively constructs the design of a large router-
less network from good designs of smaller networks, and is
applicable to any n×m many-core chips with superior scala-
bility. Moreover, we propose several novel techniques to ad-
dress the challenges in designing routerless interface to avoid
network abnormalities such as deadlock, livelock and star-
vation. These techniques result in markedly reduced buffer
requirement and injection/ejection hardware overhead. Com-
pared with a conventional router-based Mesh, the proposed
routerless design achieves 9.48X reduction in power, 7.2X
reduction in area, 2.5X reduction in zero-load packet latency,
and 1.73X increase in throughput. Compared with the current
state-of-the-art scheme that tries to replace routers with less
costly structures (IMR [28]), the proposed scheme achieves
7.75X reduction in power, 3.32X reduction in area,1.26X
reduction in zero-load packet latency, and 1.6X increase in
throughput.

2. BACKGROUND AND MOTIVATION

2.1 Related Work
Prior work on on-chip interconnects can be classified into

bus-based and network-based. The latter can be further cate-
gorized as router-based NoCs and routerless NoCs. The main
difference between bus-based interconnects and routerless
NoCs is that bus-based interconnects use buses in a direct,
simple and primitive way, whereas routerless NoCs use a
network of buses in a sophisticated way and typically need
some sort of switching that earlier bus systems do not need.
Each of the three categories is discussed in more detail below.

Bus-based Interconnects are centralized communication
systems that are straightforward and cheap to implement.
While buses work very well for a few cores, the overall
performance degrades significantly as more cores are con-
nected to the bus [17, 37]. The two main reasons for such

146

degradation are the length of the bus and its capacitive load.
Rings [7,8,14] can also be considered as variants of bus-based
systems where all the cores are attached to a single bus/ring.
IBM Cell processor [38] is an improved bus-based system
which incorporates a number of bus optimization techniques
in a single chip. Despite having a better performance over
conventional bus/ring implementations, IBM Cell process
still suffers from serious scalability issues [4].

Router-based NoCs are decentralized communication sys-
tems. A great deal of research has gone into this (e.g.,
[10, 13, 18, 23, 25, 26, 31, 33], too many to cite all here). The
switching capability of routers provides multiple paths and
parallel communications to improve throughput, but the over-
head of routers is also quite substantial. Bufferless NoC
(e.g., [15]) is a recent interesting line of work. In this ap-
proach, buffer resources in a router are reduced to the mini-
mal possible size (i.e. one flit buffer per input port). Although
bufferless NoC is a clever approach to reduce area and power
overhead, the router still has other expensive components
that are eliminated in the routerless approach (Section 7.5
compares the hardware cost).

Routerless NoCs aim to eliminate the costly routers while
having scalable performance. While the notion of routerless
NoC has not been formally mentioned before, there are sev-
eral works that try to remove routers with sophisticated use
of buses and switches. However, as discussed below, the
hardware overhead in these works is quite high, some re-
quiring comparable buffer resources as conventional routers,
thus not truly materializing the benefits of routerless NoCs.
One approach is presented in [34], where the NoC is divided
into segments. Each segment is a bus, and all the segments
are connected by a central bus. Segments and central bus
are linked by a switching element. In large NoCs, either
the segments or the central bus may suffer from scalability
issues due to their bus-based nature. A potential solution is
to increase the number of wires in the central bus and the
number of cores in a segment. However, for NoCs larger
than 8×8, it would be challenging to find the best size for
the segments and central bus without affecting scalability.
Hierarchical rings (HR) [16] has a similar design approach
to [34]. The NoC is divided into disjoint sets of cores, and
each set is connected by a ring. Such rings are called local
rings. Additionally, a set of global rings bring together the
local rings. Packets switch between local and global rings
through a low-cost switching element. Although the design
has many nice features, the number of switching element is
still not small. For example, for an 8×8 NoC, there are 40
switching element, which is close to the number of routers in
the 8×8 network. Recently, a multi-ring-based NoC called
isolated multiple rings (IMR) is proposed in [28] and has been
shown to be superior than the above Hierarchical rings. To
our knowledge, this is the latest and best scheme so far along
the line of work on removing routers. While the proposed
concept is promising, the specific IMR design has several
major issues and the results are far from optimal, as discussed
in the next subsection.

2.2 Need for New Routerless NoC Designs

2.2.1 Principles and Challenges
We use Figure 1 to explain the basic principles of routerless

NoCs. This figure depicts an example of a 16-core chip. The
4× 4 layout specifies only the positions of the cores, not

(b)(a)

Figure 1: An example of loops in a 4×4 grid.

Table 1: Number of unidirectional loops in n×n grid [2].

n # of loops n # of loops
1 0 2 2
3 26 4 426
5 18,698 6 2,444,726
7 974,300,742 8 1,207,683,297,862

any topology. A straightforward but naive way to achieve
routerless NoC is to use a long loop (e.g., a Hamiltonian
cycle) that connects every node on the chip as shown in Figure
1(a). Each node injects packets to the loop and receives
packets from the loop through a simple interface (referred to
as RL interface hereafter). Apparently, even if a flit on the
loop can be forwarded to the next node at the speed of one
hop per cycle, this design would still be very slow because of
the average O(n2) hop count, assuming an n×n many-core
chip. Scalability is poor in this case, as conventional topology
as such Mesh has an average hop count of O(n).

To reduce the hop count, we need to select a better set of
loops to connect the nodes, while guaranteeing that every
pair of nodes is connected by at least one loop (so that a
node can reach another node directly in one loop). Figure
1(b) shows an example with the use of three loops, which
satisfies the connectivity requirement and reduces the all-pair
average hop count by 46% compared with (a). Note that,
when injecting a packet, a source node chooses a loop that
connects to the destination node. Once the packet is injected
into a loop, it stays on this loop and travels at the speed of
one hop per cycle all the way to the destination node. No
changing loops is needed at RL interfaces, thus avoiding the
complex switching hardware and per-hop contention that may
occur in conventional router-based on-chip networks.

Several key questions can be asked immediately. Is the
design in Figure 1(b) optimal? Is it possible to select loops
that achieve comparable hop count as conventional NoCs
such as Mesh? Is there a generalized method that we can use
to find the loops for any n×n network? How can this be done
without exceeding the available on-chip wiring resources?
Unfortunately, answering these questions is extremely chal-
lenging due to the enormous design space. We calculated the
number of possible loops for n×n chips based on the method
used in [2], where a loop can be any unidirectional circular
path with the length between 4 and n. Table 1 lists the results
up to n = 8. As can be seen, the number of possible loops
grows extremely rapidly. To make things more challenging,
because the task is to find a set of loops, the design space that
the routerless NoC approach is looking at is not the number
of loops, but the combination of these loops! A large portion
of the combinations would be invalid, as not all combinations
can provide the connectivity where there is at least one loop
between any source and destination pair.

Meanwhile, any selected final set of loops needs to comfort-
ably fit in the available wiring resources on the chip. Specif-
ically, when loops are superpositioned, the number of over-

147

Figure 2: A long wire in NoCs with repeaters.

Table 2: Wiring resources in a many-core
processor chip.

Many Core
Processor

Xeon Phi,
Knights Landing

Number of Cores 72
NoC Size 6×6

Die Area (31.9mm x 21.4mm)
683 mm2 [3]

Technology FinFET 14nm
Interconnect 13 Metal Layers

Inter-core Metal
Layers

Metal
Layer Pitch [22] [30]

M4 80nm
M5 104nm

lapped loops between any neighboring node pairs should not
exceed a limit. In what follows, we use overlapping to refer
to the number of overlapped loops between two neighboring
nodes (e.g., in Figure 1(b) some neighboring nodes have two
loops passing through them while others have only one loop
passing), and use overlapping cap to refer to the limit of the
overlapping. Note that the cap should be much lower than the
theoretical wiring resources on chip due to various practical
considerations (analyzed in Section 3). As an example, if the
overlapping cap is 1, then Figure 1(a) has to be the final set.
If the overlapping cap increases to 2, it provides more op-
portunity for improvement, e.g., the better solution in Figure
1(b). The overlapping cap is a hard limit and should not be
violated. However, as long as this cap is met, it is actually
beneficial to approach this cap for as many neighboring node
pairs as possible. Doing this indicates more wires are being
utilized to connect nodes and reduce hop count.

2.2.2 Major Issues in Current State-of-the-Art
There are several major issues that must be addressed in

order to achieve effective routerless NoCs. We use IMR [28]
as an example to highlight these issues. IMR is a state-of-the-
art design that follows the above principle to deploy a set of
rings such that each ring joins a subset of cores. While IMR
has been shown to outperform other schemes with or without
the use of routers, the fundamental issues in IMR prevent
it from realizing the true potential of routerless NoCs. This
calls for substantial research on this topic to develop more
efficient routerless designs and implementations.
(1) Large overlapping. For example, IMR uses a large num-
ber of superpositioned rings (equivalent to the above-defined
overlapping cap of 16) without analyzing the actual availabil-
ity of wiring resources on-chip.
(2) Extremely slow search. A genetic algorithm is used in
IMR to search the design space. This general-purpose search
algorithm is very slow (taking several hours to generate re-
sults for 16×16, and is not able to produce good results in a
reasonable time for larger networks). Moreover, the design
generated by the algorithm is far from optimal with high hop
counts, as evaluated in Section 6. Thus, efforts are much
needed to utilize clever heuristics to speed up the process.
(3) High buffer requirement. Currently, the network inter-
face of IMR needs one packet-sized buffer per ring to avoid

deadlock. Given that up to 16 rings can pass through an IMR
interface, the total number of buffers at each interface is very
close to a conventional router.

The above issues are addressed in the next three sections.
Section 3 analyzes the main contributing factors that deter-
mine the wiring availability in practice, and estimates rea-
sonable overlapping caps using a contemporary many-core
processor. Section 4 proposes a layered progressive approach
to select a set of loops, which is able to generate highly
scalable routerless NoC designs in less than a second (up to
128×128). Section 5 presents our implementation of router-
less interface. This includes a technique that requires only
one flit-sized buffer per loop (as opposed to one packet-sized
buffer per loop). This technique alone can save buffer area
by multiple times.

3. ANALYSIS ON WIRING RESOURCES

3.1 Metal Layers
As technology scales to smaller dimensions, it provides a

higher level of integration. With this trend, each technology
comes with an increasing number of routing metal layers
to meet the growing demand for higher integration. For
example, Intel Xeon Phi (Knights Landing) [1] and KiloCore
[9] are fabricated in the process technology with 11 and 13
metal layers, respectively. Each metal layer has a pitch size
which defines the minimum wire width and the space between
two adjacent wires. The physical difference between metal
layers results in various electrical characteristics. This allows
designers to meet their design constraints such as delay on the
critical nets by switching between different layers. Typically,
lower metal layers have narrower width and are used for
local interconnects (e.g., within a circuit block); higher metal
layers have wider width and are used for global interconnects
(e.g., power supply, clock); middle metal layers are used
for semi-global interconnects (e.g., connecting neighboring
cores). Table 2 lists several key physical parameters of Xeon
Phi including the middle layers that can be used for on-chip
networks.

3.2 Wiring in NoC
To estimate the actual wiring resources that can used for

148

routing, several important issues should be considered when
placing wires on the metal layers.

Routing strategy: In general, two approaches can be con-
sidered for routing interconnects over cores in NoCs. In the
first approach, dedicated routing channels are used to route
wires in NoCs. This method of routing was widely used in
earlier technology nodes where only three metal layers were
typically provided [36], and it has around 20% area overhead.
In the second approach, wires are routed over the cores at
different metal layers [32]. In the modern technology nodes
with six to thirteen metal layers, this approach of routing over
logic becomes more common for higher integration. This can
be done in two ways: 1) several metal layers are dedicated
for routing wires, and 2) a fraction of each metal layer is
used to route the wires. The first way is preferable given
that many metal layers are available in advanced technology
nodes [32, 36].

Repeater: Wires have parasitic resistance and capacitance
which increase with the length of wires. To meet a specific
target frequency, a long wire needs to be split into several
segments, and repeaters (inverters) are inserted between the
segments, as shown in Figure 2. The size of repeaters should
be considered in estimating the available wiring resources.
For a long wire in the NoC, the size of each repeater (h times
of an inverter with minimum size) is usually not small, but
the number of repeaters (k) needed is small [27]. In fact, it
has been shown that increasing K has negligible improvement
in reducing the delay [27]. For a 2GHz operating frequency,
using only one repeater with the size of 40 times W/L of
the minimum sized inverter can support a wire length of
2mm [32], which is longer than the typical distance between
two cores in a many-core processor [35].

Coping with cross-talk: Cross-talk noises can occur ei-
ther between the wires on the same metal layer or between the
wires on different metal layers, both of which may affect the
number of wires that can be placed. The impact of cross-talk
noises on voltage can be calculated by Equation (1) as the
voltage changes on a floated victim wire [19].

∆Vvictim =
Cad j

Cvictim +Cad j
×∆Vaggressor (1)

where ∆Vvictim is the voltage variation on the victim wire,
∆Vaggressor is the voltage variation on the aggressor, Cvictim
is the total capacitance (including load capacitance) of the
victim wire, and Cad j is the coupling capacitance between the
aggressor and the victim. It can be observed from Equation
(1) that the impact of cross-talk on the victim wire depends on
the ratio of Cad j to Cvictim. Hence, the cross-talk on the same
layer has much larger impact on the power, performance, and
functionality of the NoC since the adjacent wires which run
in parallel on the same metal layer has larger coupling capaci-
tance (Cad j) [19]. There are two major techniques to mitigate
cross-talk noises, shielding and spacing. In the shielding
approach, crosstalk noises are largely avoided between two
adjacent wires by inserting another wire (which is usually
connected to the ground or supply voltage) between them.
In the spacing approach, adjacent wires are separated by a
certain distance that would keep the coupling noise below a
level tolerable by the target process and application. Com-
pared with spacing, shielding is much more effective as it can
almost remove crosstalk noises [5]. However, shielding also
incurs more area overhead as the distance used in the spacing
approach is usually smaller than that of inserting a wire.

Layer 4
Layer 3
Layer 2
Layer 1

Figure 3: Layers of an 8×8 grid.

3.3 Usable Wires for NoCs
To gain more insight on how many wiring resources are

usable for on-chip networks under current manufacturing
technologies, we estimated the number of usable wires by
taking into account the above factors. The estimation is based
on using two metal layers to route wires over the cores. The
area overhead of the repeater insertion including the via con-
tacts and the area occupation of the repeaters are considered
based on the layout design rules of each metal layer. We used
the conservative way of shielding to reduce crosstalk noises
(and the inserted wires are not counted towards usable wires),
although spacing may likely offer more usable wires. In addi-
tion, in practice, 20% to 30% of each dedicated metal layer
for routing wires over the cores is used for I/O signals, power,
and ground connections [32]. This overhead is also accounted
for. The maximum values of h and K are used for worst-case
estimation. As such, the above method gives a very conser-
vative estimation of the usable wires. Assuming that there
is a chip with similar physical configuration as Table 2, the
two metal layers M4 and M5 under 14nm technology can
provide 101,520 wires in the cross-section. This translates
into 793 unidirectional links of 128-bit, or 396 unidirectional
links of 256-bit, or 198 unidirectional links of 512-bit in the
cross-section. In contrast, a 6×6 mesh only uses 12 unidi-
rectional 256-bit links in the bisection, which is about 3% of
the usable wires. It is important to note that the conventional
router-based NoCs do not use very wide links for good rea-
sons. For instance, router complexity (e.g., the number of
crosspoints in switches, the size of buffers) increases rapidly
as the link width increases. Also, although wider links pro-
vide higher throughput, it is difficult to capitalize on wider
links for lower latency. The reduction in serialization latency
by using wider links quickly becomes insignificant as link
width approaches the packet size. This motivates the need
for designing routerless NoCs where wiring resources can be
used more efficiently.

The above estimation of the number of usable wires helps
to decide the overlapping cap mentioned previously. To avoid
taxing too much on the usable wiring resources and to have a
scalable design, we propose to use an overlapping cap of n
for n×n chips. In the above 6×6 case, this translates into
4.5% of the usable wires for 128-bit loop width, or 9.1% for
256-bit loop width. This parameterized overlapping cap helps
to provide the number of loops that is proportional to chip
size, so the quality of the routerless designs can be consistent
for larger chips.

4. DESIGNING ROUTERLESS NOCS

4.1 Basic Idea

149

Layer 1 = +
Figure 4: Loops in L1, and M2 = L1.

Our proposed routerless NoC design is based on what we
call layered progressive approach. The basic idea is to select
the loop set in a progressive way where the design of a large
routerless network is built on top of the design of smaller
networks. Each time the network size increments, the newly
selected loops are conceptually bundled as a layer that is
reused in the next network size.

Specifically, let Mk be the final set of selected loops for
k×k grid (2≤ k≤ n) that meets the connectivity, overlapping
and low hop count requirements. We construct Mk+2 by
combining Mk with a new set (i.e., layer) of smartly placed
loops. The new layer utilizes new wiring resources that are
available when expanding from k× k to (k+2)× (k+2).
The resulting Mk+2 can also meet all the requirements and
deliver superior performance. For example, as shown in
Figure 3, the grid is logically split into multiple layers with
increasing sizes. Let Lk be the set of loops selected for Layer
k. Firstly, suppose that we already find a good set of loops
for 2× 2 grid that connects all the nodes with a low hop
count and does not exceed an overlapping of 2 between any
neighboring nodes. That set of loops is M2, which is also L1
as this is the base case. Then we find another set of loops
L2, together with M2, can form a good set of loops for 4×4
grid (i.e., M4 = L2 ∪M2). The resulting M4 can connect
all the nodes with a low hop count and do not exceed an
overlapping of 4 between any neighboring nodes. And so on
so forth, until reaching the targeted n×n grid. In general, we
have Mn = Lbn/2c∪Mn−2 = Lbn/2c∪Lbn/2c−2∪Mn−4 = . . .=
Lbn/2c∪Lbn/2c−2∪Lbn/2c−4∪ . . .∪L1.

Apparently, the key step in the above progressive process
is how to select the set of loops in Layer k, which enables
the progression to the next sized grid with low hop count and
overlapping. In the next subsections, we walk through several
examples to illustrate how it is done to progress from 2×2
grid to 8×8 grid.

4.2 Examples

4.2.1 2×2 Grid
This is the base case with one layer. There are exactly two

possible loops, one in each direction, in a 2× 2 grid. Both
of them are included in M2 = L1, as shown in Figure 4. The
resulting M2 satisfies the requirement that every source and
destination pair is connected by at least one loop. The maxi-
mum number of loops overlapping between any neighboring
nodes is 2, which meets the overlapping cap. This set of
loops achieves a very low all-pair average hop count of 1.333,
which is as good as the Mesh.

4.2.2 4×4 Grid
M4 consists of loops from two layers. Based on our layered

progressive approach, L1 is from M2. We select 8 loops to
form L2, as illustrated in Figure 5. The 8 loops fall into four
groups (from this network size and forward, each new layer
is constructed using four groups with the similar heuristics as
discuss below). The first group, A4 (the subscript indicates the

size of the grid), has only one anti-clockwise loop. It provides
connectivity among the 12 new nodes when expanding from
Layer 1 to Layer 2. The loops in the second group, B4, have
the first column as the common edge of the loops, but the
opposite edge of the loops moves gradually towards the right
(this is more evident in group B6 in Figure 6). Similarly, the
third group, C4, uses the last column as the common edge
of the loops and gradually moves the opposite edge towards
the left. It can be verified that groups B4 and C4 provide
connectivity between the 12 new nodes in Layer 2 and the
4 nodes in Layer 1. Since the connectivity among the 4
inner nodes has already been provided by L1, the connectivity
requirement of 4× 4 grid is met by having L1, A4, B4 and
C4. The fourth group, D4, offers additional “shortcuts” in the
horizontal dimension.

A very nice feature of the selected M4 is that the wiring
resources are efficiently utilized, as the overlapping between
many neighboring node pairs is close to the overlapping cap
of 4. For example, for the first (or the last) column, each
group of loops has exactly one loops passing through that
column, totaling an overlapping of 4, which is the same as
the cap. Thus, no overlapping “ration” is under-utilized. For
the second column (or the third) column, groups A4 and D4
have no loop passing through, and groups B4 and C4 have two
loops passing through in total. However, note that the final
M4 also includes L1 which has two loops passing through the
second (or the third) column. Hence, the total overlapping
of the middle columns is also 4, exactly the same as the
cap. Simple counting can show that the overlapping on the
horizontal dimension is also 4 for each row. Owing to this
efficient use of wiring resource “ration”, the all-pair average
hop count is 3.93 for the selected set of loops in M4. The
final set is M4 = L2∪M2 = L2∪L1.

4.2.3 6×6 Grid
M6 consists of loops from three layers. L1 and L2 are from

M4, and L3 is formed in a similar fashion as 4×4 grid from
four groups, as illustrated in Figure 6. Again, connectivity is
provided by M4 and groups A to C. Together with group D,
the number of overlapping on each column and row is 6, thus
fully utilizing the allocated wiring resources.

Additionally, for the purpose of reducing hop count and
balancing horizontal and vertical wiring utilization, when
we combine M4 and L3 to form M6, every loop in M4 is
reversed and then rotated for 90◦ clockwise1. If this slightly
changed M4 is denoted as M′4, the final set can be expressed
as M6 = L3∪M′4 = L3∪ (L2∪L1)

′, with an all-pair average
hop count of 6.07.

4.2.4 8×8 Grid
Similar to earlier examples, L4 consists of loops shown

in Figure 7. The final set M8 is M8 = L4∪M′6 = L4∪
(
L3∪

(L2∪L1)
′)′ with an all-pair average hop count of 8.32.

4.3 Formal Procedure
For an n×n grid, the loops for a routerless NoC design can

be recursively found by the procedure shown in Algorithm
1. The procedure is recursive and denoted as RLrec. The
procedure begins by generating loops for the outer layer, say
layer i, and then it recursively generates loops for layer i−1
1In 4×4 grid, reversal and rotation of M2 is not necessary because
M2 and M′2 have the same effect on L1.

150

Layer 2 = + + + + + + +

D4C4B4
A4

Figure 5: Loops in L2. M4 = L2 ∪L1.

A6 B6

C6 D6
Figure 6: Loops in L3. M6 = L3 ∪L2 ∪L1.

A8
B8

C8 D8
Figure 7: Loops in L4. M8 = L4 ∪L3 ∪L2 ∪L1.

Algorithm 1: RLrec
Input :NL, NH ; the low and high numbers

1 begin
2 if NL = NH then
3 return {}
4 Let M = {}
5 if NH −NL = 1 then
6 M = M ∪ G(NL,NH ,NL,NH , clockwise)
7 M = M ∪ G(NL,NH ,NL,NH , anticlockwise)
8 return M
9 M = M ∪ G(NL,NH ,NL,NH , anticlockwise) // Group A

10 for i = NL +1→ NH −1 do
11 M = M ∪ G(NL,NH ,NL, i, clockwise) // Group B
12 M = M ∪ G(NL,NH , i,NH , clockwise) // Group C
13 for i = L→ H−1 do
14 M = M ∪ G(i, i+1,NL,NH , clockwise) // Group D

15 M′ = RLrec(NL+1, NH -1)
16 Reverse and rotate for 90◦ every loop in M′

17 return M∪M′

and so on until the base case is reached or the layer has a
single node or empty. Procedure G(r1,r2,c1,c2,d) is a simple
function that generates a rectangular shape loop with corners
(r1,c1), (r1,c2), (r2,c1) and (r2,c2) and direction d. When
processing each layer in this algorithm, procedure G is called
repeatedly to generate four groups of loops. Additionally,
the generated loops rotate 90 degrees and reverse directions
after processing each layer to balance wiring utilization and
reduce hop count, respectively. The final loops generated by
the RLrec algorithm have an overlapping of at most n.

While it would be ideal if an analytical expression can be
derived to calculate the average hop count for this heuristic

Injection  
Link

Ejection
Links

Loop 1

Loop m

Routing  
 Table

A
 p

oo
l o

f E
X

B
s

Link Selector  
 & arbitrator

Output 1

Output m

Single flit 
buffer

Single flit 
buffer EXB 1

EXB k

Figure 8: Routerless interface components.

approach, this seems to be very challenging at the moment.
However, it is possible to calculate the average hop count
numerically. This result is presented in the evaluation, which
shows that our proposed design is highly scalable.

5. IMPLEMENTATION DETAILS
After addressing the key issue of finding a good set of

loops, the next important task is to efficiently implement the
routerless NoC design in hardware. Because of the routerless
nature, no complex switching or virtual channel (VC) struc-
ture is needed at each hop, so the hardware between nodes
and loops has a small area footprint in general. However, due
to various potential network abnormalities such as deadlock,
livelock, and starvation, a certain number of resources are
required to guarantee correctness. If not addressed appropri-
ately, this may cause substantial overhead that is comparable
to router-based NoCs. In this section, we propose a few

151

𝐴"

Clock cycle i

Injection Q
ZX Y

Clock cycle i+1

Injection Q
ZX Y

Clock cycle i+2

Injection Q
ZX Y

Clock cycle i+3

Injection Q
ZX Y

𝐵"𝐵$ 𝐵%

𝐴" 𝐴% 𝐴&

𝐵$

𝐴% 𝐴$𝐶" 𝐵"

𝐵% 𝐵$

𝐴%𝐵% 𝐵$𝐴" 𝐴$ 𝐴"

Figure 9: Injecting a long packet requires a packet-sized buffer per loop at each hop in prior implementation (X, Y and Z are interfaces).

effective techniques to minimize those overhead.
In a routerless NoC, each node uses an interface (RL inter-

face) to interact with one or multiple loops that pass through
this node. Figure 8 shows the main components of a RL
interface. While details are explained in the following subsec-
tions, the essential function of the interface includes injecting
packets into a matching loop based on connectivity and avail-
ability, forwarding packets to the next hop on the same loop,
and ejecting packets at the destination node. Notice that pack-
ets cannot switch loops once injected. All the loops have the
same width (e.g., 128-bit wires).

5.1 Injection Process

5.1.1 Extension Buffer Technique
A loop is basically a bundle of wires connected with flip-

flops at each hop (Figure 8). At clock cycle i, a flit arriving
at the flip-flop of loop l must be consumed immediately by
either being ejected at this node or forwarded to the next hop
on loop l through output l. If no flit arrives at loop l (thus
not using output l), the RL interface can inject a new flit
on loop l through output l. However, it is possible that an
injecting packet consists of multiple flits and requires several
cycles to finish the injection, during which other flits on loop
l may arrive at this RL interface. Therefore, addition buffer
resources are needed to hold the incoming flits temporarily.

If routerless NoC uses the scheme proposed in prior ring-
based work (e.g., IMR [28]), a full packet-sized buffer per
loop at each hop would be needed to ensure correctness,
which is very inefficient. As illustrated in Figure 9, a long
packet B with multiple flits is waiting for injection (there is
no issue if it is a short single-flit packet). At clock cycle i, the
injection is allowed because packet B sees that no other flit in
Interface Y is competing with B for the output to Interface Z.
From cycle i+1 to i+3, the flits of B are injected sequentially.
However, while packet B is being injected during these cycles,
another long packet A may arrive at Interface Y . Because RL
interfaces do not employ flow control to stop the upstream
node, Interface Y needs to provide a packet-sized buffer to
temporarily store the entire packet A. A serious inefficiency
lies in the fact that, if there are m loops passing through a RL
interface, the interface needs to have m packet-sized buffers,
one for each loop.

To address this inefficiency, we notice that an interface
injects packets one at a time, so not all the loops are affected
simultaneously. Based on this observation, we propose the
extension buffer technique to share the packet-sized buffer
among loops. As shown in Figure 8, each loop has only
a flit-sized buffer, but the interface has a pool of extension
buffers (EXBs). The size of each EXB is the size of a long
packet, so when a loop is “extended” with an EXB, it would
be large enough to store a long packet. Minimally, only
one EXB is needed in the pool, but having multiple EXBs
may have slight performance improvement. This is because
another injection might occur while the previous EXB is not

entirely released (drained) due to a previous injection (e.g.,
clock cycle i+ 3 in Figure 9). However, as shown later in
the evaluation, the performance difference is negligible. As a
result, our proposed technique of using one shared EXB can
essentially achieve the same objective of ensuring correctness
as IMR but reduces the buffer requirement by m times. This
is equivalent to an 8X saving in buffer resources in 8× 8
networks and 16X saving in 16×16 networks.

5.1.2 Injection Process
The injection process with the use of EXBs is straight-

forward. To inject a packet p of n f flits, the first step is to
look up a small routing table to see which loop can reach
p’s destination. The routing table is pre-computed since all
the loops are pre-determined. The packet p then waits for
the loops to become available (i.e., having sufficient buffer
space). Assume l is a loop that has the shortest distance to the
destination among all the available loops. When the injection
starts, the interface holds the output port of l for n f cycles
to inject p, and assigns a free EXB to l if n f > 1 and l is not
already connected to another EXB. During those n f cycles,
any incoming flit through the input port of l is enqueued
in the extension buffer. The EXB is released later when its
buffer slots are drained.

5.2 Ejection Process
The ejection process starts as soon as the head flit of a

packet p reaches the RL interface of its destination node.
The interface ejects p, one flit per cycle. Once p is ejected,
the interface will wait for another packet to eject. There is,
however, a potential issue with the ejection process. While
unlikely, a RL interface with m loops may receive up to m
head flits simultaneously in a given cycle that are all des-
tined to this node. Because any incoming packets need to
be consumed immediately and the packets are already at the
destination, the interface needs to have m ejection links in
order to eject all the packets in that cycle. As each eject
link has the same width as the loop (i.e., 128-bit), this incurs
substantial hardware overhead.

To reduce this overhead, we utilize the fact that the actual
probability of having k packets (1 < k ≤ m) arriving at the
same destination in the same cycle is low, and this probability
decreases drastically as k increases. Based on this observa-
tion, we propose to optimize for the common case where only
e ejection links are provided (e� m). If more than e packets
arrive at the same cycle, (k− e) packets are forwarded to the
next hop. Those deflected packets will continue on their re-
spective loops and will circle back to the destination later. As
shown in the evaluation, having two ejection links can reduce
the percentage of circling packets to be below 1% on average
(1.6% max) across the benchmarks. This demonstrates that
this is a viable and effective technique to reduce overhead.

5.3 Avoiding Network Abnormalities
As network abnormalities are theoretically possible but

152

practically unlikely scenarios, our design philosophy is to
place very relaxed conditions to trigger the handling proce-
dures, so as to minimize performance impact while guaran-
teeing correctness.

5.3.1 Livelock Avoidance
A livelock may occur if a packet circles indefinitely and

never gets a chance to eject. We address this issue by having
a byte-long circling counter at each head flit with an initial
value of zero. Every time a packet reaches its destination
interface and is forced to be deflected, the counter is incre-
mented by 1. If the circling counter of a packet p reaches
254 but none of the ejection link is available, the interface
marks one of its ejection links as reserved and then deflects p
for the last time. The marked ejection link will not eject any
more packets after finishing the current one, until p circles
back to the ejection link (by then the marked ejection link
will be available; otherwise there is a possible protocol-level
deadlock, discussed shortly). Once p is ejected, the interface
will unmark the ejection link for it to function normally. Due
to the extremely low circling percentage (maximum 3 times
of circling for any packet in our simulations), this livelock
avoidance scheme has minimal performance impact.

5.3.2 Deadlock Avoidance
With no protocol-level dependence at injection/ejection

endpoints, routing-induced deadlock is not possible in router-
less NoCs as packets arriving at each hop are either ejected or
forwarded immediately. Hence, a packet can always reach its
destination interface without being blocked by other packets.
The above livelock avoidance ensures that the packet can be
ejected within a limited number of circlings.

With more than one dependent packet types, the marked
ejection link in the above livelock avoidance scheme may
not able to eject the current packet (say a request packet) in
the ejection queue, because the associated cache controller
cannot accept new packets from the ejection queue (i.e., input
of the controller). This may happen when the controller itself
is waiting for packets (say a reply packet) in the injection
queue (i.e., output of the controller) to be injected into the
network. A potential protocol-level deadlock may occur if
that reply packet cannot be injected, such as the loop is full
of request packets that are waiting to be ejected.

To avoid such protocol-level deadlock, the conventional
approach is to have a separate physical or virtual network for
each dependent packet type. While similar approach can be
used for routerless NoCs, here we propose a less resource
demanding solution. which is made possible by the circling
property of loops. This solution only needs an extra reserved
EXB, as well as a separate injection and ejection queue for
each dependent packet type. The separate injection/ejection
queues can come from duplicating original queues or from
splitting the original queues to multiple queues. In either case,
the loops and wiring resources are not duplicated, which is
important to keep the cost low. Following the above livelock
avoidance scheme, when a packet p on loop l completes
the final circling (counter value of 255) and finds that the
marked ejection link is still not available, p is temporarily
buffered in the reserved EXB instead of forwarding to output
l. Meanwhile, we allow the head packet q in the injection
queue of the terminating packet type (e.g., a reply packet
in the request-reply example) to inject into loop l through
output l. Once q is injected, the cache controller is able to put

another reply packet in its output (i.e., the injection queue)
which, in turn, allows the controller to accept a new request
from its input (i.e., the ejection queue). This creates space
in the ejection queue to accept packet p that is previously
stored in the reserved EXB. Once p moves to the ejection
queue, the EXB is freed. Essentially, the reserved EXB
acts as a temporary exchanging space while the separate
injection/ejection queues avoid blocking of different packet
types at the endpoints.

5.3.3 Starvation Avoidance
The last corner case we address is starvation. With the

previous livelock and deadlock handling, if a packet is con-
sumed at its destination RL interface, the interface can use
the free output to inject a new packet. However, it is possible
that a particular interface X is not the destination of any pack-
ets and there is always a flit passing through X every single
cycle. This never occurred in any of our experiments as it
is practically impossible that a cache bank is not accessed
by any other cores. However, it is theoretically possible and,
when occurred, prevents X from injecting new packets. We
propose the following technique to avoid starvation for the
completeness of the routerless NoC design. If X cannot inject
a packet after a certain number of clock cycles (a very long
period, e.g., hundreds of thousand cycles or long enough to
have negligible impact on performance), X piggybacks the
next passing head flit f with the ID of X. When f is ejected at
its destination interface Y, instead of injecting a new packet, Y
injects a single-flit no-payload dummy packet that is destined
to X. When the dummy packet arrives at X, X can now inject
a new packet by using the free slot created by the dummy
packet. This breaks the starvation configuration.

5.4 Interface Hardware Implementation
Figure 8 depicts the main components of a RL interface.

We have explained the extension buffers (EXBs), single-flit
buffers, routing table, and multiple ejection links in the pre-
vious subsections. The arbitrator receives flits from input
buffers and selects up to e input loops for ejection based on
the oldest first policy. The arbitrator contains a small register
that holds the arbitration results. The link status selector is a
simple state machine associated with the loops. It monitors
the input loops and arbitration results, and changes the state
of the loops (e.g., ejection, stall in extension buffers, etc.) in
the state machine. There are several other minor logic blocks
that are not shown in Figure 8 for better clarity. Note that
the RL interface does not use the information of neighboring
nodes, which differs from most conventional router-based
NoCs that need credits or on/off signals for handshaking.

To ensure the correctness of the proposed interface hard-
ware, we implement the design in RTL Verilog that includes
all the detailed components. The Verilog implementation is
verified in Modelsim, synthesized in Synopsys Design Com-
piler, and placed and routed using Cadence Encounter tool.
We use the latest 15nm process NanoGate FreePDK 15 Cell
Library [29] for more accurate evaluation. As a key result,
the RL interface is able to operate at up to 4.3GHz frequency
while keeping the packet forwarding process in one clock
cycle. This is fast enough to match up with most commercial
many-core processors. Injecting packets may take an addi-
tional cycle for table look-up. In the main evaluation below,
both the interfaces and cores are operating at 2GHz.

153

0
0.05
0.1
0.15
0.2
0.25
0.3

(1 ,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3 ,1) (3,2) (3,3) (16,16)Th
ro
ug
hp
ut
	(
fli
t/
no
de
/c
yc
le
)

(Number	of	ejectors,	Number	of	EXBs)

Uniform Transpose Hotspot Bit	reverse

Figure 10: Throughput of routerless NoC under different number of ejection
links and extension buffers (EXBs).

6. EVALUATION METHODOLOGY
We evaluate the proposed routerless NoC (RL) extensively

against Mesh, EVC, and IMR in Booksim [24]. For synthetic
traffic workloads, we use uniform, transpose, bit reverse,
and hotspot (with 8 hotspots nodes). BookSim is warmed
up for 10,000 clock cycles and then collects performance
statistics for another 100,000 cycles at various injection rates.
The injection rate starts at 0.005 flit/node/cycle and is in-
cremented by 0.005 flit/node/cycle until the throughput is
reached. Moreover, we integrate Booksim with Synfull [6]
for performance study of PARSEC [11] and SPLASH-2 [39]
benchmarks. Power and area studies are based on Verilog
post-synthesis simulations, as described in Section 5.4.

In the synthetic study, each router in Mesh is configured
with relatively small buffer resources, having 2 VCs per link
and 3 flits per VC. The link width is set to 256-bit. Also, the
router is optimized with lookahead routing and speculative
switch allocation to reduce pipeline stages to 2 cycles per
router and 1 cycle per link. EVC has the same configuration
as Mesh except for one extra VC that is required to enable
express channels. For IMR, the ring set is generated by the
evolutionary approach described in [28]. To allow a fair com-
parison with RL, the maximum number of overlapping cap,
for both RL and IMR, is set to n for n×n NoC. We also fol-
low the original paper to faithfully implement IMR’s network
interface. Each input link in an IMR’s interface is attached
with a buffer of 5 flits and the link width is set to 128-bit
(the same as the original paper). In RL, loops are generated
by RLrec algorithm and accordingly the routing table for
each node is calculated. Each interface is configured with
two ejection links and each input link has a flit-size buffer.
Also, an EXB of 5 flits is implemented in each interface. The
link width is 128-bit (the same as IMR). In all the designs,
packets are categorized into data and control packets where
each control packet has 8 bytes and each data packet has 72
bytes. Accordingly, data packets in Mesh, EVC, IMR, and
RL are of 3, 3, 5 and 5 flits, respectively, and the control
packets are of a single flit.

For benchmark performance study, we also add 2D Mesh
with various configurations as well as a 3D Cube design
into the comparison. RL has the same configuration as the
synthetic study. For 2D Mesh, we use 9 configurations, each
having the configuration M(x,y) where x ∈ {1,2,3} is the
router delay and y ∈ {1,2,3} is the buffer size, i.e., routers
with 1-cycle, 2-cycle and 3-cycle delay, and with 1-flit, 2-flit
and 3-flit buffer size. 3D Cube is configured with 2 VCs per
link, 3 flits per VC, and 2-cycle per hop latency.

7. RESULTS AND ANALYSIS

7.1 Ejection Links and Extension Buffers

The proposed RL scheme is flexible to use any number of
ejection links and EXBs. On the ejection side, the advantages
of having more ejection links are higher chance for packet
ejection and lower chance for packet circling in a loop. How-
ever, adding more ejection links complicates the design of
the interface and leads to additional power and area overhead
in the interface and the receiving node. On the injection
side, EXBs have a direct effect on the injection latency of
long packets. Recall that, a loop must be already attached
with an EXB or a free EXB is available to be able to inject
a long packet. Similar to ejection links, having more EXBs
can lower injection latency but incur larger area and power
overhead.

We studied the throughput of RL with different configura-
tions of ejection links and EXBs on various synthetic traffic
patterns. The NoC size for this study is 8× 8. The results
are shown in Figure 10. In the figure, each configuration
is denoted by (x,y) where x is the number of ejection links
and y is the number of EXBs. The basic and best in terms
of area and power overhead is (1,1) configuration but it has
the worst performance. By adding up to three EXBs with a
single ejection link, the throughput is only slightly changed
(less than 5%). This indicates that the number of EXBs is not
very critical to performance, and it is possible to use only one
EXB for injecting long packets while saving buffer space.

For (2,1) configuration, it doubles the chance for packet
ejection when compared to (1,x) configurations. The through-
put is notably improved by an average of 38% for all the pat-
terns when compared to (1,1) configurations. For instance,
hotspot traffic pattern has 0.125 throughput in (2,1) configu-
ration but only 0.065 in (1,1), a 92.5% improvement). How-
ever, on top of (2,1) configuration, adding up-to three EXBs
(i.e., (2,3)) improves throughput only by 5% on average.

Given all the results, we choose the (2,1) configuration as
the best trade-off point, and use it for the remainder of this
section. We also plot the (16,16) configuration which is the
ideal case (no blocking in injection or ejection may happen).
As can be seen, (2,1) is very close to the ideal case. Section
7.3 provides a detailed study for the number of times packet
circling in loops for the (2,1) configuration.

7.2 Synthetic Workloads
Figure 11 plots the performance results of four synthetic

traffic patterns for an 8×8 NoC. RL has the lowest zero-load
packet latency in all four traffic patterns. For example, in uni-
form random, the zero-load packet latency is 21.2, 14.9, 10.5,
and 8.3 cycles for Mesh, EVC, IMR, and RL, respectively.
When averaged over the four patterns, RL has an improve-
ment of 1.59x, 1.43x, and 1.25x over Mesh, EVC, and IMR,
respectively. RL achieves this due to low per hop latency
(one cycle) and low hop count.

In terms of throughput, the proposed RL also has advantage
over other schemes. For example, the throughput for hotspot
is 0.08, 0.05, 0.06, and 0.125 (per flit/node/cycle) for Mesh,
EVC, IMR, and RL, respectively. In fact, RL has the highest
throughput for all the traffic patterns. When averaged over
the four patterns, RL improves throughput by 1.73x, 2.70x,
and 1.61x over Mesh, EVC, and IMR, respectively. This is
mainly owing to the better utilization of wiring resources in
RL. Note that, EVC has a lower throughput than Mesh as
EVC is essentially a scheme that trades off throughput for
lower latency at low traffic load.

7.3 PARSEC and SPLASH-2 Workloads

154

Mesh EVC IMR RL

5

15

25

35

45

0.005 0.06 0.115

Av
er

ag
e

la
te

nc
y (

cy
cl

e)

Injection rate (flits/node/cycle)

Hotspot5

15

25

35

45

0.005 0.06 0.115 0.17 0.225

Av
er

ag
e

la
te

nc
y (

cy
cl

e)

Injection rate (flits/node/cycle)

Bit reverse
5

15

25

35

45

0.005 0.06 0.115 0.17 0.225

Av
er

ag
e

la
te

nc
y (

cy
cl

e)

Injection rate (flits/node/cycle)

Transpose5

15

25

35

45

0.005 0.06 0.115 0.17 0.225

Av
er

ag
e

la
te

nc
y (

cy
cl

e)

Injection rate (flits/node/cycle)

Uniform

Figure 11: Performance comparison for synthetic traffic patterns.

0

15

30

45

0

15

30

45

0

6

12

18

0

25

50

75

(a) 4x4 (b) 8x8

(c) 16x16 (d) 8x8

3D CubeIMREVCM(3,5)M(3,3)M(3,1)M(2,5)M(2,3)M(2,1)M(1,5)M(1,3)M(1,1) RL

Figure 12: PARSEC and SPLASH-2 benchmark performance results (y-axis represents average pack latency in cycles.) RL is compared with different Mesh
configurations, EVC, and IMR in (a), (b) and (c). In (d), RL is also compared with a 3D Cube.

0%

20%

40%

60%

80%

100%

120%

140%

160%

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

M
es
h

EV
C

IM
R RL

water_spatialwater_nsquare barnes blackscholes bodytrack cholesky facesim fft fluidanimate lu_cb lu_ncb radiosity radix raytrace swaptions volrend AVG

Br
ea
kd
ow

n	
of
	N
oC

Po
w
er
	(n
or
m
al
ize

d	
to
	M

es
h)

Dynamic Power Static Power

Figure 13: Breakdown of power consumption for different PARSEC and SPLASH-2 workloads (normalized to Mesh).

We utilize Synfull and Booksim to study the performance
of RL, 2D Mesh with different configurations, EVC, IMR,
and a 3D Cube under 16 PARSEC and SPLASH-2 bench-
marks. The NoC sizes under evaluation are 4×4, 8×8 and
16×16 for RL, 2D Mesh, EVC and IMR, and 4×4×4 for
3D cube. Figure 12 shows the results.

In Figure 12(a)-(c), RL is compared against 2D Mesh, EVC
and IMR. From the figures, the best configuration for Mesh is
M(1,5) (i.e. per hop latency of 1 and buffer size of 5) and the
worst is M(3,1). Lowering per hop latency in Mesh helps to
improve overall latency, and reducing buffer sizes may cause
packets to wait longer for credits and available buffers. The
average packet latency of RL in 4×4, 8×8, and 16×16 are
4.3, 8.9 and 20.1 cycles, respectively. This translates into
an average latency reduction of RL over M(1,5) by 57.8%,
38.4% and 22.2% in 4× 4, 8× 8 and 16× 16, respectively.
The IMR rings in 16×16 are very long and seriously affects
its latency. RL reduces the average latency by 23.3% over
EVC and 41.2% over IMR.

In Figure 12(d), the performance of 3D cube is clearly
better than all the Mesh configurations in (b) mainly due to
lower hop count and larger bisection bandwidth. Despite this,
RL still offers better performance than 3D cube. The average
latency of RL is 8.9 cycles, which is 41% lower than the 15.2
cycles of 3D cube.

7.4 Power
Figure 13 compares the power consumption of Mesh (i.e.

M(2,3)), EVC, IMR and RL for different benchmarks, nor-
malized to the Mesh. All the power consumption shown in
this Figure are reported after P&R in NanGate FreePDK 15
Cell Library [29] by Cadence Encounter. The activity factors
for the power measurement are obtained from Booksim, and
the power consumption includes that of all the wires.

The average dynamic power consumption for RL is only
0.26mW, and for Mesh, EVC and IMR the average is 2.88mW,
4.27mW and 2.91mW, respectively. Because RL has no cross-
bar, it requires only 9%, 6.1% and 8.9% of the dynamic power
consumed by Mesh, EVC and IMR, respectively. Meanwhile,

155

45281 µm2

IMR

6286 µm2

RL

Mesh

20930 µm228516 µm2

Bufferless

Figure 14: Area comparison under 15nm technology.

static power is mostly consumed by buffers. Unlike Mesh,
EVC and IMR, RL has a much lower buffer requirement.
As a result, RL consumes very low static power of 0.18mW
on average, while Mesh, EVC and IMR consume 1.39mW,
1.64mW and 0.58mW, respectively. Adding dynamic and
static power together, on average, RL reduces the total NoC
power consumption by 9.48X, 13.1X and 7.75X over Mesh,
EVC and IMR, respectively.

7.5 Area
Figure 14 compares the router or interface area of the

different schemes we are studying. The results are obtained
from Cadence Encounter after P&R2. We also add a bufferless
design to the comparison. The largest area is 60731µm2

for EVC (not shown in the figure) followed by 45281µm2,
28516µm2, 20930µm2 and 6286µm2 for Mesh, Bufferless,
IMR and RL, respectively. The EXB and ejection link sharing
techniques as well as the simplicity of the RL interface are
the main contributors for the significant reduction of area
overhead. Overall, RL has an area saving of 89.6%, 86.1%,
77.9% and 69.9% compared with EVC, Mesh, Bufferless3

and IMR, respectively.
The wiring area is not included as wires are spread through-

out the metal layers and cannot be compared directly. We do
acknowledge that IMR and RL use more wiring resources
than other designs. RL uses a small percentage of middle
metal layers for wires and, as a result, more repeaters are
needed. The total area for all the link repeaters is 0.127mm2

which is 4.3% of the mesh router area. However, as middle
layers are above the logic area, RL is unlikely to increase the
chip size.

0

10

20

30

40

4x4 8x8 16x16Av
er

ag
e

Ho
p

co
un

t

Bit reverse

0

10

20

30

40

4x4 8x8 16x16Av
er

ag
e

Ho
p

co
un

t

Transpose

0

10

20

30

40

4x4 8x8 16x16Av
er

ag
e

Ho
p

co
un

t

Uniform

0

50

100

150

200

4x4 8x8 16x16Av
er

ag
e

Ho
p

co
un

t

Hotspot

RLIMROptimal Mesh

31
1.

4
12

8.
7

12
5.

8
13

2.
9

Figure 15: Average hop count for synthetic workloads.

8. DISCUSSION

8.1 Scalability and Regularity
2Our CAD tools limit P&R for processing cores.
3In addition to area reduction, RL also has 2.8X higher throughput
(under UR) and 64.3% lower latency than bufferless NoC.

Table 3: Average overlapping and loops/rings in RL/IMR

Network Overlap
cap

Avg overlap(%)
of links

Max loops/
rings in node

Avg loops/
rings(%) in node

Longest
loop/ring

RL 4x4 4 3.33 (83.3%) 6 5 (62%) 12

IMR 4x4 4 2.33 (58.3%) 4 3.5 (43%) 14

RL 8x8 8 6 (75%) 14 10.5 (65%) 28

IMR 8x8 8 4.71 (58.9%) 10 8.2 (54%) 48

RL 16x16 16 11.33 (70.8%) 30 21.2 (66%) 60

IMR 16x16 16 8.13 (50.8%) 18 15.2 (47%) 240

�1

Figures 11 and 12 already showed the advantage of RL in
terms of latency and throughput for large networks. Figure 15
further compares the average hop count (zero-load hop count)
of RL, IMR, and optimal Mesh. As can be seen, IMR has
very high average hop count because of its lengthy rings. In
contrast, the average hop count of RL is only slightly higher
than optimal Mesh. Note that RL achieves this low hop count
without having the switch capability of conventional routers.

Routerless NoC is not as irregular as it appears in the fig-
ures. In our actual design and evaluation, all the RL interfaces
use the same design (some ports are left unused if no loops
are connected), so the main irregularity is the way that links
form loops. One way to quantify the degree of link irregular-
ity is how many different possible lengths of links, which is
n−1 for n×n NoC. This degree is similar to that of Flattened
Butterfly [25] and MECS [18].

8.2 Average Overlapping
We discussed before that as long as the overlapping cap is

met, it is beneficial to approach this cap for as many neigh-
boring node pairs as possible to increase resource utilization
and improve performance. Table 3 presents this statistics
for RL and IMR. It can be seen that the average overlapping
between adjacent nodes in RL is at least 20% more than that
of IMR. Also, the longest loop in RL is always shorter than
the longest ring in IMR, and the difference increases as the
NoC gets bigger. Shorter loops reduce average hop count and
offer a lower latency. For example, in 16× 16 the longest
loop in RL is of 60 nodes while in IMR it is of 240 nodes.

8.3 Impact on Latency distribution

0

2

4

6

8

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39Pe
rc
en

ta
ge
	o
f		p

ac
ke
ts

Average	latency	(cycles)

%

%

%

%

%

%

Figure 16: Latency distribution of benchmarks for RL 8×8 NoC.

The extension buffer technique and the reduced ejection
link technique save buffer resources at the risk of increas-
ing packet latency. Figure 16 shows distribution of average
packet latency, averaged over different benchmarks. The RL
interface is configured the same as previous sections with one
EXB and two ejectors. The take away message from the fig-
ure is that the two techniques has minimal impact on latency
under tight resource allocation. For example, the average
packet latency is only 8.3 cycles for RL, and only 0.71% of
the packets having latency larger than 20 cycles, with the

156

largest being 39 cycles. The tail in the latency distribution is
thin and short.

8.4 RL for n x m Chip
The RL design can be easily extended to any n×m network

sizes. The RL interface design and functionalities remain un-
changed. The RLrec algorithm needs to be modified slightly.
With rectangular shapes instead of squares, NL and NH are
not sufficient to denote the four corners of a layer. Two more
variables are needed to specify the corners of a layer correctly.
For Instance, NLr and NHr for low and high rows, and NLc
and NHc for low and high columns. Once a layer is correctly
specified, the four groups of loops can be generated in similar
fashion. The rotation step is skipped as this is not possible for
rectangular networks, but the reversing direction step remains.
The overlapping calculation needs to reflect the orientation
of the rectangular loops as well.

9. CONCLUSION
Current and future many-core processors demand highly

efficient on-chip networks to connect hundreds or even thou-
sands of processing cores. In this paper, we analyze on-chip
wiring resources in detail, and propose a novel routerless
NoC design to remove the costly routers in conventional
NoCs while still achieving scalable performance. We also
propose an efficient interface hardware implementation, and
evaluate the proposed scheme extensively. Simulation re-
sults show that the proposed routerless NoC design offers
significant advantage in latency, throughput, power and area,
compared with other designs. These results demonstrate the
viability and potential benefits of the routerless approach, and
also call for future works that continue to improve various
aspects of routerless NoCs such as performance, reliability,
and power efficiency.

Acknowledgments
We sincerely thank the anonymous reviewers for their helpful
comments and suggestions. We appreciate the authors of
IMR [28] for sharing the source code of generating IMR.
We also thank Timothy M. Pinkston for providing valuable
feedback to the work. This research was supported, in part,
by the National Science Foundation (NSF) grants #1619456,
#1566637, #1423656, #1619472 and #1321131.

10. REFERENCES
[1] http://ark.intel.com/products/95830/intel-xeon-phi-processor-7290-

16gb-1_50-ghz-72-core/.
[2] https://oeis.org/A140517.
[3] http://wccftech.com/intel-sc15-knights-landing-14nm-wafer-

specification/.
[4] T. W. Ainsworth and T. M. Pinkston, “On characterizing performance

of the cell broadband engine element interconnect bus,” in
International Symposium on Networks-on-Chip (NOCS), 2007.

[5] R. Arunachalam, E. Acar, and S. R. Nassif, “Optimal
shielding/spacing metrics for low power design,” in IEEE Annual
Symposium on VLSI, 2003.

[6] M. Badr and N. E. Jerger, “Synfull: synthetic traffic models capturing
cache coherent behaviour,” in ISCA, 2014.

[7] L. A. Barroso and M. Dubois, “The performance of cache-coherent
ring-based multiprocessors,” in ISCA, 1993.

[8] ——, “Cache coherence on a slotted ring.” in ICPP, 1991.
[9] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu,

A. Tran, E. Adeagbo, and B. Baas, “A 5.8 pj/op 115 billion ops/sec, to
1.78 trillion ops/sec 32nm 1000-processor array,” in Symposium on
VLSI Circuits, 2016.

[10] L. Chen and T. M. Pinkston, “Nord: Node-router decoupling for
effective power-gating of on-chip routers,” in MICRO, 2012.

[11] B. Christian, “Benchmarking modern multiprocessors,” Ph.D.
dissertation, Princeton University, January 2011.

[12] I. Cutress, “Supercomputing 15: Intel’s knights landing xeon phi
silicon on display,” November 2015.

[13] W. J. Dally and B. Towles, “Route packets, not wires: on-chip
interconnection networks,” in DAC, 2001.

[14] G. S. Delp, D. J. Farber, R. G. Minnich, J. M. Smith, and M. C. Tam,
“Memory as a network abstraction,” IEEE Network, vol. 5, no. 4, 1991.

[15] C. Fallin, C. Craik, and O. Mutlu, “Chipper: A low-complexity
bufferless deflection router,” in HPCA, 2011.

[16] C. Fallin, X. Yu, G. Nazario, and O. Mutlu, “A high-performance
hierarchical ring on-chip interconnect with low-cost routers,” 2011.

[17] P. Gratz, C. Kim, R. McDonald, S. W. Keckler, and D. Burger,
“Implementation and evaluation of on-chip network architectures,” in
International Conference on Computer Design. IEEE, 2006.

[18] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Express cube
topologies for on-chip interconnects,” in HPCA, 2009.

[19] D. Harris and N. Weste, CMOS VLSI Design: A Circuits and Systems
Perspective. Pearson/Addison-Wesley, 2005.

[20] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-ghz
mesh interconnect for a teraflops processor,” IEEE Micro, 2007.

[21] J. Howard, S. Dighe, Y. Hoskote, S. Vangal et al., “A 48-core ia-32
processor in 45 nm cmos using on-die message-passing and dvfs for
performance and power scaling,” IEEE Journal of Solid-State Circuits,
2011.

[22] C.-H. Jan, U. Bhattacharya, R. Brain, S.-J. Choi, G. Curello, G. Gupta,
W. Hafez, M. Jang, M. Kang, K. Komeyli et al., “A 22nm soc platform
technology featuring 3-d tri-gate and high-k/metal gate, optimized for
ultra low power, high performance and high density soc applications,”
in Electron Devices Meeting (IEDM). IEEE, 2012.

[23] N. E. Jerger, L. S. Peh, and M. Lipasti, “Virtual circuit tree
multicasting: A case for on-chip hardware multicast support,” in ISCA,
2008.

[24] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally,
G. Michelogiannakis, and J. Kim, “A detailed and flexible
cycle-accurate network-on-chip simulator,” in ISPASS. IEEE, 2013.

[25] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: A cost-efficient
topology for high-radix networks,” in ISCA, 2007.

[26] A. K. Kodi, A. Sarathy, and A. Louri, “ideal: Inter-router
dual-function energy and area-efficient links for network-on-chip (noc)
architectures,” in ISCA, 2008.

[27] J. Liu, L. R. Zheng, D. Pamunuwa, and H. Tenhunen, “A global wire
planning scheme for network-on-chip,” in International Symposium on
Circuits and Systems (ISCAS), 2003.

[28] S. Liu, T. Chen, L. Li, X. Feng, Z. Xu, H. Chen, F. Chong, and
Y. Chen, “Imr: High-performance low-cost multi-ring nocs,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 6, 2016.

[29] NanGate, Inc. Nangate freePDK15 open cell library. [Online].
Available: http://www.nangate.com

[30] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder,
V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu et al., “A
14nm logic technology featuring 2 nd-generation finfet, air-gapped
interconnects, self-aligned double patterning and a 0.0588 µm 2 sram
cell size,” in IEEE International Electron Devices Meeting, 2014.

[31] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif,
and C. R. Das, “Vichar: A dynamic virtual channel regulator for
network-on-chip routers,” in MICRO, 2006.

[32] D. Pamunuwa, J. Oberg, L. R. Zheng, M. Millberg, A. Jantsch, and
H. Tenhunen, “Layout, performance and power trade-offs in
mesh-based network-on-chip architectures,” in International
Conference on Very Large Scale Integration, 2003.

[33] M. K. Papamichael and J. C. Hoe, “The connect network-on-chip
generator,” Computer, vol. 48, no. 12, 2015.

[34] A. N. Udipi, N. Muralimanohar, and R. Balasubramonian, “Towards
scalable, energy-efficient, bus-based on-chip networks,” in HPCA,
2010.

[35] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob et al., “An 80-tile 1.28 tflops
network-on-chip in 65nm cmos,” in ISSCC, 2007.

[36] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, Eds., Electronic Design
Automation: Synthesis, Verification, and Test. Morgan Kaufmann
Publishers Inc., 2009.

[37] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, 2007.

[38] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick,
“The potential of the cell processor for scientific computing,” in
Computing frontiers. ACM, 2006.

[39] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
splash-2 programs: Characterization and methodological
considerations,” in ISCA, 1995.

157

The 4 x 4 RL network Loops

Loop ID Nodes

1 [0, 1, 5, 9, 13, 12, 8, 4]

2 [3, 7, 11, 15, 14, 10, 6, 2]

3 [0, 1, 2, 6, 10, 14, 13, 12, 8, 4]

4 [3, 7, 11, 15, 14, 13, 9, 5, 1, 2]

5 [0, 4, 8, 12, 13, 14, 15, 11, 7, 3, 2, 1]

6 [0, 1, 2, 3, 7, 6, 5, 4]

7 [4, 5, 6, 7, 11, 10, 9, 8]

8 [8, 9, 10, 11, 15, 14, 13, 12]

9 [5, 6, 10, 9]

10 [5, 9, 10, 6]

158

The 8 x 8 RL network Loops

Loop ID Nodes

1 [0, 1, 9, 17, 25, 33, 41, 49, 57, 56, 48, 40, 32, 24, 16, 8]

2 [7, 15, 23, 31, 39, 47, 55, 63, 62, 54, 46, 38, 30, 22, 14, 6]

3 [0, 1, 2, 10, 18, 26, 34, 42, 50, 58, 57, 56, 48, 40, 32, 24, 16, 8]

4 [7, 15, 23, 31, 39, 47, 55, 63, 62, 61, 53, 45, 37, 29, 21, 13, 5, 6]

5 [0, 1, 2, 3, 11, 19, 27, 35, 43, 51, 59, 58, 57, 56, 48, 40, 32, 24, 16, 8]

6 [7, 15, 23, 31, 39, 47, 55, 63, 62, 61, 60, 52, 44, 36, 28, 20, 12, 4, 5, 6]

7 [0, 1, 2, 3, 4, 12, 20, 28, 36, 44, 52, 60, 59, 58, 57, 56, 48, 40, 32, 24, 16, 8]

8 [7, 15, 23, 31, 39, 47, 55, 63, 62, 61, 60, 59, 51, 43, 35, 27, 19, 11, 3, 4, 5, 6]

9 [0, 1, 2, 3, 4, 5, 13, 21, 29, 37, 45, 53, 61, 60, 59, 58, 57, 56, 48, 40, 32, 24, 16, 8]

10 [7, 15, 23, 31, 39, 47, 55, 63, 62, 61, 60, 59, 58, 50, 42, 34, 26, 18, 10, 2, 3, 4, 5, 6]

11 [0, 1, 2, 3, 4, 5, 6, 14, 22, 30, 38, 46, 54, 62, 61, 60, 59, 58, 57, 56, 48, 40, 32, 24, 16, 8]

12 [7, 15, 23, 31, 39, 47, 55, 63, 62, 61, 60, 59, 58, 57, 49, 41, 33, 25, 17, 9, 1, 2, 3, 4, 5, 6]

13 [0, 8, 16, 24, 32, 40, 48, 56, 57, 58, 59, 60, 61, 62, 63, 55, 47, 39, 31, 23, 15, 7, 6, 5, 4, 3, 2, 1]

14 [0, 1, 2, 3, 4, 5, 6, 7, 15, 14, 13, 12, 11, 10, 9, 8]

15 [8, 9, 10, 11, 12, 13, 14, 15, 23, 22, 21, 20, 19, 18, 17, 16]

16 [16, 17, 18, 19, 20, 21, 22, 23, 31, 30, 29, 28, 27, 26, 25, 24]

17 [24, 25, 26, 27, 28, 29, 30, 31, 39, 38, 37, 36, 35, 34, 33, 32]

18 [32, 33, 34, 35, 36, 37, 38, 39, 47, 46, 45, 44, 43, 42, 41, 40]

19 [40, 41, 42, 43, 44, 45, 46, 47, 55, 54, 53, 52, 51, 50, 49, 48]

20 [48, 49, 50, 51, 52, 53, 54, 55, 63, 62, 61, 60, 59, 58, 57, 56]

21 [9, 17, 18, 19, 20, 21, 22, 14, 13, 12, 11, 10]

22 [49, 50, 51, 52, 53, 54, 46, 45, 44, 43, 42, 41]

23 [9, 17, 25, 26, 27, 28, 29, 30, 22, 14, 13, 12, 11, 10]

24 [49, 50, 51, 52, 53, 54, 46, 38, 37, 36, 35, 34, 33, 41]

25 [9, 17, 25, 33, 34, 35, 36, 37, 38, 30, 22, 14, 13, 12, 11, 10]

26 [49, 50, 51, 52, 53, 54, 46, 38, 30, 29, 28, 27, 26, 25, 33, 41]

27 [9, 17, 25, 33, 41, 42, 43, 44, 45, 46, 38, 30, 22, 14, 13, 12, 11, 10]

28 [49, 50, 51, 52, 53, 54, 46, 38, 30, 22, 21, 20, 19, 18, 17, 25, 33, 41]

29 [9, 10, 11, 12, 13, 14, 22, 30, 38, 46, 54, 53, 52, 51, 50, 49, 41, 33, 25, 17]

30 [9, 17, 25, 33, 41, 49, 50, 42, 34, 26, 18, 10]

31 [10, 18, 26, 34, 42, 50, 51, 43, 35, 27, 19, 11]

Loop ID
159

32 [11, 19, 27, 35, 43, 51, 52, 44, 36, 28, 20, 12]

33 [12, 20, 28, 36, 44, 52, 53, 45, 37, 29, 21, 13]

34 [13, 21, 29, 37, 45, 53, 54, 46, 38, 30, 22, 14]

35 [18, 19, 27, 35, 43, 42, 34, 26]

36 [21, 29, 37, 45, 44, 36, 28, 20]

37 [18, 19, 20, 28, 36, 44, 43, 42, 34, 26]

38 [21, 29, 37, 45, 44, 43, 35, 27, 19, 20]

39 [18, 26, 34, 42, 43, 44, 45, 37, 29, 21, 20, 19]

40 [18, 19, 20, 21, 29, 28, 27, 26]

41 [26, 27, 28, 29, 37, 36, 35, 34]

42 [34, 35, 36, 37, 45, 44, 43, 42]

43 [27, 28, 36, 35]

44 [27, 35, 36, 28]

NodesLoop ID

160

The 16 x 16 RL network Loops

Loop ID Nodes

1 [0, 1, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241, 240, 224, 208, 192, 176, 160, 144,
128, 112, 96, 80, 64, 48, 32, 16]

2 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 238, 222, 206, 190, 174, 158,
142, 126, 110, 94, 78, 62, 46, 30, 14]

3 [0, 1, 2, 18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 242, 241, 240, 224, 208, 192, 176, 160,
144, 128, 112, 96, 80, 64, 48, 32, 16]

4 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 253, 237, 221, 205, 189, 173,
157, 141, 125, 109, 93, 77, 61, 45, 29, 13, 14]

5 [0, 1, 2, 3, 19, 35, 51, 67, 83, 99, 115, 131, 147, 163, 179, 195, 211, 227, 243, 242, 241, 240, 224, 208, 192,
176, 160, 144, 128, 112, 96, 80, 64, 48, 32, 16]

6 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 253, 252, 236, 220, 204, 188,
172, 156, 140, 124, 108, 92, 76, 60, 44, 28, 12, 13, 14]

7 [0, 1, 2, 3, 4, 20, 36, 52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 212, 228, 244, 243, 242, 241, 240, 224,
208, 192, 176, 160, 144, 128, 112, 96, 80, 64, 48, 32, 16]

8 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 253, 252, 251, 235, 219, 203,
187, 171, 155, 139, 123, 107, 91, 75, 59, 43, 27, 11, 12, 13, 14]

9 [0, 1, 2, 3, 4, 5, 21, 37, 53, 69, 85, 101, 117, 133, 149, 165, 181, 197, 213, 229, 245, 244, 243, 242, 241, 240,
224, 208, 192, 176, 160, 144, 128, 112, 96, 80, 64, 48, 32, 16]

10 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 253, 252, 251, 250, 234, 218,
202, 186, 170, 154, 138, 122, 106, 90, 74, 58, 42, 26, 10, 11, 12, 13, 14]

11 [0, 1, 2, 3, 4, 5, 6, 22, 38, 54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 214, 230, 246, 245, 244, 243, 242,
241, 240, 224, 208, 192, 176, 160, 144, 128, 112, 96, 80, 64, 48, 32, 16]

12 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 253, 252, 251, 250, 249, 233,
217, 201, 185, 169, 153, 137, 121, 105, 89, 73, 57, 41, 25, 9, 10, 11, 12, 13, 14]

13 [0, 1, 2, 3, 4, 5, 6, 7, 23, 39, 55, 71, 87, 103, 119, 135, 151, 167, 183, 199, 215, 231, 247, 246, 245, 244, 243,
242, 241, 240, 224, 208, 192, 176, 160, 144, 128, 112, 96, 80, 64, 48, 32, 16]

14 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 253, 252, 251, 250, 249, 248,
232, 216, 200, 184, 168, 152, 136, 120, 104, 88, 72, 56, 40, 24, 8, 9, 10, 11, 12, 13, 14]

15 [0, 1, 2, 3, 4, 5, 6, 7, 8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 247, 246, 245,
244, 243, 242, 241, 240, 224, 208, 192, 176, 160, 144, 128, 112, 96, 80, 64, 48, 32, 16]

16 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 253, 252, 251, 250, 249, 248,
247, 231, 215, 199, 183, 167, 151, 135, 119, 103, 87, 71, 55, 39, 23, 7, 8, 9, 10, 11, 12, 13, 14]

17 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 25, 41, 57, 73, 89, 105, 121, 137, 153, 169, 185, 201, 217, 233, 249, 248, 247, 246,
245, 244, 243, 242, 241, 240, 224, 208, 192, 176, 160, 144, 128, 112, 96, 80, 64, 48, 32, 16]

18 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 253, 252, 251, 250, 249, 248,
247, 246, 230, 214, 198, 182, 166, 150, 134, 118, 102, 86, 70, 54, 38, 22, 6, 7, 8, 9, 10, 11, 12, 13, 14]

19 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 250, 249, 248,
247, 246, 245, 244, 243, 242, 241, 240, 224, 208, 192, 176, 160, 144, 128, 112, 96, 80, 64, 48, 32, 16]

20 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 253, 252, 251, 250, 249, 248,
247, 246, 245, 229, 213, 197, 181, 165, 149, 133, 117, 101, 85, 69, 53, 37, 21, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

Loop ID
161

21 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 27, 43, 59, 75, 91, 107, 123, 139, 155, 171, 187, 203, 219, 235, 251, 250,
249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 224, 208, 192, 176, 160, 144, 128, 112, 96, 80, 64, 48, 32,
16]

22 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 253, 252, 251, 250, 249, 248,
247, 246, 245, 244, 228, 212, 196, 180, 164, 148, 132, 116, 100, 84, 68, 52, 36, 20, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14]

23 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252, 251,
250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 224, 208, 192, 176, 160, 144, 128, 112, 96, 80, 64, 48,
32, 16]

24 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 253, 252, 251, 250, 249, 248,
247, 246, 245, 244, 243, 227, 211, 195, 179, 163, 147, 131, 115, 99, 83, 67, 51, 35, 19, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14]

25 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 29, 45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 237, 253,
252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 224, 208, 192, 176, 160, 144, 128, 112, 96,
80, 64, 48, 32, 16]

26 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 253, 252, 251, 250, 249, 248,
247, 246, 245, 244, 243, 242, 226, 210, 194, 178, 162, 146, 130, 114, 98, 82, 66, 50, 34, 18, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14]

27 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 30, 46, 62, 78, 94, 110, 126, 142, 158, 174, 190, 206, 222, 238,
254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 224, 208, 192, 176, 160, 144, 128,
112, 96, 80, 64, 48, 32, 16]

28 [15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 254, 253, 252, 251, 250, 249, 248,
247, 246, 245, 244, 243, 242, 241, 225, 209, 193, 177, 161, 145, 129, 113, 97, 81, 65, 49, 33, 17, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14]

29 [0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 241, 242, 243, 244, 245, 246, 247, 248,
249, 250, 251, 252, 253, 254, 255, 239, 223, 207, 191, 175, 159, 143, 127, 111, 95, 79, 63, 47, 31, 15, 14, 13,
12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

30 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16]

31 [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35,
34, 33, 32]

32 [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,
50, 49, 48]

33 [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67,
66, 65, 64]

34 [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83,
82, 81, 80]

35 [80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102,
101, 100, 99, 98, 97, 96]

36 [96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 127, 126, 125, 124, 123, 122, 121,
120, 119, 118, 117, 116, 115, 114, 113, 112]

37 [112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 143, 142, 141, 140, 139, 138,
137, 136, 135, 134, 133, 132, 131, 130, 129, 128]

38 [128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 159, 158, 157, 156, 155, 154,
153, 152, 151, 150, 149, 148, 147, 146, 145, 144]

NodesLoop ID

162

39 [144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 175, 174, 173, 172, 171, 170,
169, 168, 167, 166, 165, 164, 163, 162, 161, 160]

40 [160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 190, 189, 188, 187, 186,
185, 184, 183, 182, 181, 180, 179, 178, 177, 176]

41 [176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 207, 206, 205, 204, 203, 202,
201, 200, 199, 198, 197, 196, 195, 194, 193, 192]

42 [192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 223, 222, 221, 220, 219, 218,
217, 216, 215, 214, 213, 212, 211, 210, 209, 208]

43 [208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 239, 238, 237, 236, 235, 234,
233, 232, 231, 230, 229, 228, 227, 226, 225, 224]

44 [224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 255, 254, 253, 252, 251, 250,
249, 248, 247, 246, 245, 244, 243, 242, 241, 240]

45 [17, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18]

46 [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 222, 221, 220, 219, 218, 217, 216, 215,
214, 213, 212, 211, 210, 209]

47 [17, 33, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 46, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,
18]

48 [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 222, 206, 205, 204, 203, 202, 201, 200,
199, 198, 197, 196, 195, 194, 193, 209]

49 [17, 33, 49, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 62, 46, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21,
20, 19, 18]

50 [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 222, 206, 190, 189, 188, 187, 186, 185,
184, 183, 182, 181, 180, 179, 178, 177, 193, 209]

51 [17, 33, 49, 65, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 78, 62, 46, 30, 29, 28, 27, 26, 25, 24, 23,
22, 21, 20, 19, 18]

52 [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 222, 206, 190, 174, 173, 172, 171, 170,
169, 168, 167, 166, 165, 164, 163, 162, 161, 177, 193, 209]

53 [17, 33, 49, 65, 81, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 94, 78, 62, 46, 30, 29,
28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18]

54 [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 222, 206, 190, 174, 158, 157, 156, 155,
154, 153, 152, 151, 150, 149, 148, 147, 146, 145, 161, 177, 193, 209]

55 [17, 33, 49, 65, 81, 97, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 110, 94, 78, 62,
46, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18]

56 [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 222, 206, 190, 174, 158, 142, 141, 140,
139, 138, 137, 136, 135, 134, 133, 132, 131, 130, 129, 145, 161, 177, 193, 209]

57 [17, 33, 49, 65, 81, 97, 113, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 126, 110,
94, 78, 62, 46, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18]

58 [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 222, 206, 190, 174, 158, 142, 126, 125,
124, 123, 122, 121, 120, 119, 118, 117, 116, 115, 114, 113, 129, 145, 161, 177, 193, 209]

59 [17, 33, 49, 65, 81, 97, 113, 129, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 142,
126, 110, 94, 78, 62, 46, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18]

NodesLoop ID

163

60 [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 222, 206, 190, 174, 158, 142, 126, 110,
109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, 113, 129, 145, 161, 177, 193, 209]

61 [17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174,
158, 142, 126, 110, 94, 78, 62, 46, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18]

62 [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 222, 206, 190, 174, 158, 142, 126, 110,
94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 97, 113, 129, 145, 161, 177, 193, 209]

63 [17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189,
190, 174, 158, 142, 126, 110, 94, 78, 62, 46, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18]

64 [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 222, 206, 190, 174, 158, 142, 126, 110,
94, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209]

65 [17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204,
205, 206, 190, 174, 158, 142, 126, 110, 94, 78, 62, 46, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18]

66 [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 222, 206, 190, 174, 158, 142, 126, 110,
94, 78, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209]

67 [17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219,
220, 221, 222, 206, 190, 174, 158, 142, 126, 110, 94, 78, 62, 46, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,
18]

68 [225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 222, 206, 190, 174, 158, 142, 126, 110,
94, 78, 62, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193,
209]

69 [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 46, 62, 78, 94, 110, 126, 142, 158, 174, 190, 206, 222,
238, 237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226, 225, 209, 193, 177, 161, 145, 129, 113, 97,
81, 65, 49, 33]

70 [17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 226, 210, 194, 178, 162, 146, 130, 114, 98, 82,
66, 50, 34, 18]

71 [18, 34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 226, 227, 211, 195, 179, 163, 147, 131, 115, 99, 83,
67, 51, 35, 19]

72 [19, 35, 51, 67, 83, 99, 115, 131, 147, 163, 179, 195, 211, 227, 228, 212, 196, 180, 164, 148, 132, 116, 100,
84, 68, 52, 36, 20]

73 [20, 36, 52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 212, 228, 229, 213, 197, 181, 165, 149, 133, 117, 101,
85, 69, 53, 37, 21]

74 [21, 37, 53, 69, 85, 101, 117, 133, 149, 165, 181, 197, 213, 229, 230, 214, 198, 182, 166, 150, 134, 118, 102,
86, 70, 54, 38, 22]

75 [22, 38, 54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 214, 230, 231, 215, 199, 183, 167, 151, 135, 119, 103,
87, 71, 55, 39, 23]

76 [23, 39, 55, 71, 87, 103, 119, 135, 151, 167, 183, 199, 215, 231, 232, 216, 200, 184, 168, 152, 136, 120, 104,
88, 72, 56, 40, 24]

77 [24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 233, 217, 201, 185, 169, 153, 137, 121, 105,
89, 73, 57, 41, 25]

78 [25, 41, 57, 73, 89, 105, 121, 137, 153, 169, 185, 201, 217, 233, 234, 218, 202, 186, 170, 154, 138, 122, 106,
90, 74, 58, 42, 26]

NodesLoop ID

164

79 [26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 234, 235, 219, 203, 187, 171, 155, 139, 123, 107,
91, 75, 59, 43, 27]

80 [27, 43, 59, 75, 91, 107, 123, 139, 155, 171, 187, 203, 219, 235, 236, 220, 204, 188, 172, 156, 140, 124, 108,
92, 76, 60, 44, 28]

81 [28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 237, 221, 205, 189, 173, 157, 141, 125, 109,
93, 77, 61, 45, 29]

82 [29, 45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 237, 238, 222, 206, 190, 174, 158, 142, 126, 110,
94, 78, 62, 46, 30]

83 [34, 35, 51, 67, 83, 99, 115, 131, 147, 163, 179, 195, 211, 210, 194, 178, 162, 146, 130, 114, 98, 82, 66, 50]

84 [45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 220, 204, 188, 172, 156, 140, 124, 108, 92, 76, 60, 44]

85 [34, 35, 36, 52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 212, 211, 210, 194, 178, 162, 146, 130, 114, 98, 82,
66, 50]

86 [45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 220, 219, 203, 187, 171, 155, 139, 123, 107, 91, 75,
59, 43, 44]

87 [34, 35, 36, 37, 53, 69, 85, 101, 117, 133, 149, 165, 181, 197, 213, 212, 211, 210, 194, 178, 162, 146, 130,
114, 98, 82, 66, 50]

88 [45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 220, 219, 218, 202, 186, 170, 154, 138, 122, 106, 90,
74, 58, 42, 43, 44]

89 [34, 35, 36, 37, 38, 54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 214, 213, 212, 211, 210, 194, 178, 162, 146,
130, 114, 98, 82, 66, 50]

90 [45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 220, 219, 218, 217, 201, 185, 169, 153, 137, 121, 105,
89, 73, 57, 41, 42, 43, 44]

91 [34, 35, 36, 37, 38, 39, 55, 71, 87, 103, 119, 135, 151, 167, 183, 199, 215, 214, 213, 212, 211, 210, 194, 178,
162, 146, 130, 114, 98, 82, 66, 50]

92 [45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 220, 219, 218, 217, 216, 200, 184, 168, 152, 136, 120,
104, 88, 72, 56, 40, 41, 42, 43, 44]

93 [34, 35, 36, 37, 38, 39, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 215, 214, 213, 212, 211, 210,
194, 178, 162, 146, 130, 114, 98, 82, 66, 50]

94 [45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 220, 219, 218, 217, 216, 215, 199, 183, 167, 151, 135,
119, 103, 87, 71, 55, 39, 40, 41, 42, 43, 44]

95 [34, 35, 36, 37, 38, 39, 40, 41, 57, 73, 89, 105, 121, 137, 153, 169, 185, 201, 217, 216, 215, 214, 213, 212,
211, 210, 194, 178, 162, 146, 130, 114, 98, 82, 66, 50]

96 [45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 220, 219, 218, 217, 216, 215, 214, 198, 182, 166, 150,
134, 118, 102, 86, 70, 54, 38, 39, 40, 41, 42, 43, 44]

97 [34, 35, 36, 37, 38, 39, 40, 41, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 218, 217, 216, 215, 214, 213,
212, 211, 210, 194, 178, 162, 146, 130, 114, 98, 82, 66, 50]

98 [45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 220, 219, 218, 217, 216, 215, 214, 213, 197, 181, 165,
149, 133, 117, 101, 85, 69, 53, 37, 38, 39, 40, 41, 42, 43, 44]

99 [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 59, 75, 91, 107, 123, 139, 155, 171, 187, 203, 219, 218, 217, 216, 215,
214, 213, 212, 211, 210, 194, 178, 162, 146, 130, 114, 98, 82, 66, 50]

NodesLoop ID

165

100 [45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 220, 219, 218, 217, 216, 215, 214, 213, 212, 196, 180,
164, 148, 132, 116, 100, 84, 68, 52, 36, 37, 38, 39, 40, 41, 42, 43, 44]

101 [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 219, 218, 217,
216, 215, 214, 213, 212, 211, 210, 194, 178, 162, 146, 130, 114, 98, 82, 66, 50]

102 [45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 220, 219, 218, 217, 216, 215, 214, 213, 212, 211, 195,
179, 163, 147, 131, 115, 99, 83, 67, 51, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]

103 [34, 50, 66, 82, 98, 114, 130, 146, 162, 178, 194, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,
205, 189, 173, 157, 141, 125, 109, 93, 77, 61, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35]

104 [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50]

105 [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66]

106 [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82]

107 [82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98]

108 [98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 125, 124, 123, 122, 121, 120, 119, 118, 117, 116,
115, 114]

109 [114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 141, 140, 139, 138, 137, 136, 135, 134, 133, 132,
131, 130]

110 [130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 157, 156, 155, 154, 153, 152, 151, 150, 149, 148,
147, 146]

111 [146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 173, 172, 171, 170, 169, 168, 167, 166, 165, 164,
163, 162]

112 [162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 189, 188, 187, 186, 185, 184, 183, 182, 181, 180,
179, 178]

113 [178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 205, 204, 203, 202, 201, 200, 199, 198, 197, 196,
195, 194]

114 [194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 221, 220, 219, 218, 217, 216, 215, 214, 213, 212,
211, 210]

115 [51, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 60, 59, 58, 57, 56, 55, 54, 53, 52]

116 [195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179]

117 [51, 67, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 76, 60, 59, 58, 57, 56, 55, 54, 53, 52]

118 [195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 188, 172, 171, 170, 169, 168, 167, 166, 165, 164, 163, 179]

119 [51, 67, 83, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 92, 76, 60, 59, 58, 57, 56, 55, 54, 53, 52]

120 [195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 188, 172, 156, 155, 154, 153, 152, 151, 150, 149, 148, 147,
163, 179]

121 [51, 67, 83, 99, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 108, 92, 76, 60, 59, 58, 57, 56, 55, 54, 53,
52]

122 [195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 188, 172, 156, 140, 139, 138, 137, 136, 135, 134, 133, 132,
131, 147, 163, 179]

123 [51, 67, 83, 99, 115, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 124, 108, 92, 76, 60, 59, 58, 57, 56, 55,
54, 53, 52]

NodesLoop ID

166

124 [195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 188, 172, 156, 140, 124, 123, 122, 121, 120, 119, 118, 117,
116, 115, 131, 147, 163, 179]

125 [51, 67, 83, 99, 115, 131, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 140, 124, 108, 92, 76, 60, 59, 58,
57, 56, 55, 54, 53, 52]

126 [195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 188, 172, 156, 140, 124, 108, 107, 106, 105, 104, 103, 102,
101, 100, 99, 115, 131, 147, 163, 179]

127 [51, 67, 83, 99, 115, 131, 147, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 156, 140, 124, 108, 92, 76,
60, 59, 58, 57, 56, 55, 54, 53, 52]

128 [195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 188, 172, 156, 140, 124, 108, 92, 91, 90, 89, 88, 87, 86, 85,
84, 83, 99, 115, 131, 147, 163, 179]

129 [51, 67, 83, 99, 115, 131, 147, 163, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 172, 156, 140, 124, 108,
92, 76, 60, 59, 58, 57, 56, 55, 54, 53, 52]

130 [195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 188, 172, 156, 140, 124, 108, 92, 76, 75, 74, 73, 72, 71, 70,
69, 68, 67, 83, 99, 115, 131, 147, 163, 179]

131 [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 203, 202, 201, 200, 199, 198,
197, 196, 195, 179, 163, 147, 131, 115, 99, 83, 67]

132 [51, 67, 83, 99, 115, 131, 147, 163, 179, 195, 196, 180, 164, 148, 132, 116, 100, 84, 68, 52]

133 [52, 68, 84, 100, 116, 132, 148, 164, 180, 196, 197, 181, 165, 149, 133, 117, 101, 85, 69, 53]

134 [53, 69, 85, 101, 117, 133, 149, 165, 181, 197, 198, 182, 166, 150, 134, 118, 102, 86, 70, 54]

135 [54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 199, 183, 167, 151, 135, 119, 103, 87, 71, 55]

136 [55, 71, 87, 103, 119, 135, 151, 167, 183, 199, 200, 184, 168, 152, 136, 120, 104, 88, 72, 56]

137 [56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 201, 185, 169, 153, 137, 121, 105, 89, 73, 57]

138 [57, 73, 89, 105, 121, 137, 153, 169, 185, 201, 202, 186, 170, 154, 138, 122, 106, 90, 74, 58]

139 [58, 74, 90, 106, 122, 138, 154, 170, 186, 202, 203, 187, 171, 155, 139, 123, 107, 91, 75, 59]

140 [59, 75, 91, 107, 123, 139, 155, 171, 187, 203, 204, 188, 172, 156, 140, 124, 108, 92, 76, 60]

141 [68, 69, 85, 101, 117, 133, 149, 165, 181, 180, 164, 148, 132, 116, 100, 84]

142 [75, 91, 107, 123, 139, 155, 171, 187, 186, 170, 154, 138, 122, 106, 90, 74]

143 [68, 69, 70, 86, 102, 118, 134, 150, 166, 182, 181, 180, 164, 148, 132, 116, 100, 84]

144 [75, 91, 107, 123, 139, 155, 171, 187, 186, 185, 169, 153, 137, 121, 105, 89, 73, 74]

145 [68, 69, 70, 71, 87, 103, 119, 135, 151, 167, 183, 182, 181, 180, 164, 148, 132, 116, 100, 84]

146 [75, 91, 107, 123, 139, 155, 171, 187, 186, 185, 184, 168, 152, 136, 120, 104, 88, 72, 73, 74]

147 [68, 69, 70, 71, 72, 88, 104, 120, 136, 152, 168, 184, 183, 182, 181, 180, 164, 148, 132, 116, 100, 84]

148 [75, 91, 107, 123, 139, 155, 171, 187, 186, 185, 184, 183, 167, 151, 135, 119, 103, 87, 71, 72, 73, 74]

149 [68, 69, 70, 71, 72, 73, 89, 105, 121, 137, 153, 169, 185, 184, 183, 182, 181, 180, 164, 148, 132, 116, 100, 84]

150 [75, 91, 107, 123, 139, 155, 171, 187, 186, 185, 184, 183, 182, 166, 150, 134, 118, 102, 86, 70, 71, 72, 73, 74]

151 [68, 69, 70, 71, 72, 73, 74, 90, 106, 122, 138, 154, 170, 186, 185, 184, 183, 182, 181, 180, 164, 148, 132, 116,
100, 84]

NodesLoop ID

167

152 [75, 91, 107, 123, 139, 155, 171, 187, 186, 185, 184, 183, 182, 181, 165, 149, 133, 117, 101, 85, 69, 70, 71,
72, 73, 74]

153 [68, 84, 100, 116, 132, 148, 164, 180, 181, 182, 183, 184, 185, 186, 187, 171, 155, 139, 123, 107, 91, 75, 74,
73, 72, 71, 70, 69]

154 [68, 69, 70, 71, 72, 73, 74, 75, 91, 90, 89, 88, 87, 86, 85, 84]

155 [84, 85, 86, 87, 88, 89, 90, 91, 107, 106, 105, 104, 103, 102, 101, 100]

156 [100, 101, 102, 103, 104, 105, 106, 107, 123, 122, 121, 120, 119, 118, 117, 116]

157 [116, 117, 118, 119, 120, 121, 122, 123, 139, 138, 137, 136, 135, 134, 133, 132]

158 [132, 133, 134, 135, 136, 137, 138, 139, 155, 154, 153, 152, 151, 150, 149, 148]

159 [148, 149, 150, 151, 152, 153, 154, 155, 171, 170, 169, 168, 167, 166, 165, 164]

160 [164, 165, 166, 167, 168, 169, 170, 171, 187, 186, 185, 184, 183, 182, 181, 180]

161 [85, 101, 102, 103, 104, 105, 106, 90, 89, 88, 87, 86]

162 [165, 166, 167, 168, 169, 170, 154, 153, 152, 151, 150, 149]

163 [85, 101, 117, 118, 119, 120, 121, 122, 106, 90, 89, 88, 87, 86]

164 [165, 166, 167, 168, 169, 170, 154, 138, 137, 136, 135, 134, 133, 149]

165 [85, 101, 117, 133, 134, 135, 136, 137, 138, 122, 106, 90, 89, 88, 87, 86]

166 [165, 166, 167, 168, 169, 170, 154, 138, 122, 121, 120, 119, 118, 117, 133, 149]

167 [85, 101, 117, 133, 149, 150, 151, 152, 153, 154, 138, 122, 106, 90, 89, 88, 87, 86]

168 [165, 166, 167, 168, 169, 170, 154, 138, 122, 106, 105, 104, 103, 102, 101, 117, 133, 149]

169 [85, 86, 87, 88, 89, 90, 106, 122, 138, 154, 170, 169, 168, 167, 166, 165, 149, 133, 117, 101]

170 [85, 101, 117, 133, 149, 165, 166, 150, 134, 118, 102, 86]

171 [86, 102, 118, 134, 150, 166, 167, 151, 135, 119, 103, 87]

172 [87, 103, 119, 135, 151, 167, 168, 152, 136, 120, 104, 88]

173 [88, 104, 120, 136, 152, 168, 169, 153, 137, 121, 105, 89]

174 [89, 105, 121, 137, 153, 169, 170, 154, 138, 122, 106, 90]

175 [102, 103, 119, 135, 151, 150, 134, 118]

176 [105, 121, 137, 153, 152, 136, 120, 104]

177 [102, 103, 104, 120, 136, 152, 151, 150, 134, 118]

178 [105, 121, 137, 153, 152, 151, 135, 119, 103, 104]

179 [102, 118, 134, 150, 151, 152, 153, 137, 121, 105, 104, 103]

180 [102, 103, 104, 105, 121, 120, 119, 118]

181 [118, 119, 120, 121, 137, 136, 135, 134]

182 [134, 135, 136, 137, 153, 152, 151, 150]

183 [119, 120, 136, 135]

NodesLoop ID

168

184 [119, 135, 136, 120]

NodesLoop ID

169

 1 from m5.params import *

 2 from m5.objects import *

 3

 4 from BaseTopology import SimpleTopology

 5

 6 class RouterLess(SimpleTopology):

 7 description='RouterLess'

 8

 9 def __init__(self, controllers):

 10 self.nodes = controllers

 11

 12 # Makes an equal number of cache and directory cntrls

 13 def makeTopology(self, options, network, IntLink, ExtLink, Router):

 14 nodes = self.nodes

 15

 16 num_routers = options.num_cpus

 17 num_rows = options.num_rows

 18

 19 # There must be an evenly divisible number of cntrls to routers

 20 # Also, obviously the number or rows must be <= the number of routers

 21 cntrls_per_router, remainder = divmod(len(nodes), num_routers)

 22 assert(num_rows <= num_routers)

 23 num_columns = int(num_routers / num_rows)

 24 assert(num_columns * num_rows == num_routers)

 25

 26 # Create the routers in the mesh

 27 routers = [Router(router_id=i) for i in range(num_routers)]

 28 network.routers = routers

 29

 30 # link counter to set unique link ids

 31 link_count = 0

 32

 33 # Add all but the remainder nodes to the list of nodes to be uniformly

 34 # distributed across the network.

 35 network_nodes = []

 36 remainder_nodes = []

 37 for node_index in xrange(len(nodes)):

 38 if node_index < (len(nodes) - remainder):

 39 network_nodes.append(nodes[node_index])

 40 else:

 41 remainder_nodes.append(nodes[node_index])

 42 # Connect each node to the appropriate router

 43 ext_links = []

 44 for (i, n) in enumerate(network_nodes):

 45 cntrl_level, router_id = divmod(i, num_routers)

 46 assert(cntrl_level < cntrls_per_router)

 47 ext_links.append(ExtLink(link_id=link_count, ext_node=n,

 48 int_node=routers[router_id]))

 49 link_count += 1

 50

 51 # Connect the remainding nodes to router 0. These should only be

 52 # DMA nodes.

 53 for (i, node) in enumerate(remainder_nodes):

 54 assert(node.type == 'DMA_Controller')

 55 assert(i < remainder)

 56 ext_links.append(ExtLink(link_id=link_count, ext_node=node,

 57 int_node=routers[0]))

 58 link_count += 1

 59

 60 network.ext_links = ext_links

 61

 62 # Create the mesh links. First row (east-west) links then column

 63 # (north-south) links

 64 int_links = []

 65

 66 from RouterLessReader import RL_readLoops

 67 import math

 68 L = RL_readLoops(int(math.sqrt(num_routers)))

 69

 70

 71 # Create the RouterLess links.

 72 int_links = []

 73 for i in xrange(len(L)):

 74 loop = L[i]

 75 l_len = len(loop)

 76 for j in xrange(l_len):

 77 src_r = loop[j]

 78 dest_r = loop[(j+1)%l_len]

170

 79 int_links.append(IntLink(link_id=link_count,

 80 node_a=routers[src_r],

 81 node_b=routers[dest_r],

 82 node_a_port=3, # east port

 83 node_b_port=1, # west port

 84 weight=1,

 85 src_router_id=src_r,

 86 dest_router_id=dest_r,

 87 loop_id=i))

 88 link_count += 1

 89 network.int_links = int_links

171

