13 research outputs found

    Maternal and Neonatal Vitamin D Binding Protein Polymorphisms and 25-Hydroxyvitamin D Cutoffs as Determinants of Neonatal Birth Anthropometry

    Get PDF
    BACKGROUND: Vitamin D-binding protein (VDBP) is a vital regulator of optimal vitamin D homeostasis and bioavailability. Apart from its well-documented role as a key component in vitamin D dynamic transfer and circulation, it has a myriad of immunoregulatory functions related to innate immunity, which becomes particularly critical in states of increased immunological tolerance including pregnancy. In this regard, VDBP dyshomeostasis is considered to contribute to the development of several fetal, maternal, and neonatal adverse outcomes. However, precise physiological pathways, including the contribution of specific VDBP polymorphisms behind such phenomena, are yet to be fully deciphered. Our aim was to assess the combined effect of maternal and neonatal VDBP polymorphism heterogeneity in conjunction with different maternal and neonatal 25(OH)D cutoffs on the neonatal anthropometric profile at birth. METHODS: The study included data and samples from a cohort of 66 mother-child pairs at birth. The inclusion criterion was full-term pregnancy (gestational weeks 37-42). Neonatal and maternal 25(OH)D cutoffs were included according to vitamin D status at birth and delivery. Concentrations of 25(OH)D2 and 25(OH)D3 were measured using liquid chromatography-tandem mass spectrometry. RESULTS: The upper arm length of neonates with 25(OH)D ≤ 25 nmol/L was higher in neonate CC carriers for rs2298850. The upper thigh neonatal circumference was also higher in the ones with either 25(OH)D ≤ 50 or ≤75 nmol/L in rs2298850 CG + GG or rs4588 GT + TT carriers. We did not observe any significant effect for maternal VDBP polymorphisms nor for birth maternal 25(OH)D concentrations, on birth neonatal anthropometry. CONCLUSIONS: Our findings emphasize a potential role for neonatal VDBP genotypes rs2298850 and rs4588, in conjunction with specific neonatal 25(OH)D cutoffs, in the range of sufficiency on neonatal growth and development

    Investigating the role of functional polymorphism of maternal and neonatal vitamin D binding protein in the context of 25‐hydroxyvitamin D cutoffs as determinants of maternal‐neonatal vitamin D status profiles in a sunny mediterranean region

    Get PDF
    Recent results indicate that dysregulation of vitamin D‐binding protein (VDBP) could be involved in the development of hypovitaminosis D, and it comprises a risk factor for adverse fetal, maternal and neonatal outcomes. Until recently, there was a paucity of results regarding the effect of maternal and neonatal VDBP polymorphisms on vitamin D status during pregnancy in the Mediterranean region, with a high prevalence of hypovitaminosis D. We aimed to evaluate the combined effect of maternal and neonatal VDBP polymorphisms and different maternal and neonatal 25‐hy-droxyvitamin D (25(OH)D) cut‐offs on maternal and neonatal vitamin D profile. Blood samples were obtained from a cohort of 66 mother–child pairs at birth. Our results revealed that: (i) Maternal VDBP polymorphisms do not affect neonatal vitamin D status at birth, in any given internationally adopted maternal or neonatal cut‐off for 25(OH)D concentrations; (ii) neonatal VDBP polymor-phisms are not implicated in the regulation of neonatal vitamin D status at birth; (iii) comparing the distributions of maternal VDBP polymorphisms and maternal 25(OH)D concentrations, with cutoffs at birth, revealed that mothers with a CC genotype for rs2298850 and a CC genotype for rs4588 tended to demonstrate higher 25(OH)D (≥75 nmol/L) during delivery (p = 0.05 and p = 0.04, respec-tively), after adjustments for biofactors that affect vitamin D equilibrium, including UVB, BMI and weeks of gestation. In conclusion, this study from Southern Europe indicates that maternal and neonatal VDBP polymorphisms do not affect neonatal vitamin D status at birth, whereas mothers with CC genotype for rs2298850 and CC genotype for rs4588 demonstrate higher 25(OH)D concen-trations. Future larger studies are required to establish a causative effect of these specific polymor-phisms in the attainment of an adequate (≥75 nmol/L) maternal vitamin D status during pregnancy

    Amyloid Beta Adsorption Problem with Transfer Plates in Amyloid Beta 1-42 IVD Kits

    No full text
    Adsorption of CSF A1-42 during pre-analytical processing is suggested as an important confounder in testing. The aim of the present study was to assess the effect of polypropylene transfer plates (PTP) in the INNOTEST A1-42 IVD-ELISA assay on A1-42 levels. CSF samples from 26 individuals with subjective cognitive impairment (SCI) and 25 patients with suspected neurodegenerative disorders were tested using four different lots of kits. A1-42 levels in all samples that were loaded onto the PTP were significantly lower than the levels in the same samples that were analyzed without prior loading onto the PTP. We found that the PTP may adsorb A1-42 in the range 7 to 69%. The diagnosis in 20% of patients and amyloid burden assessment in 23% of SCI patients had to be modified post hoc due to initial erroneously low amyloid levels. Using a PTP prior to loading the samples onto the INNOTEST A1-42 test plate may result in erroneously low A1-42 levels

    Pleiotropic effects of pitavastatin: A pilot study using the saphenous vein endothelial cell model of endothelial injury and prevention of atherosclerosis

    No full text
    OBJECTIVE: Cardiovascular diseases are responsible for the majority of deaths on a global scale. Atherosclerosis is the main risk factor for cardiovascular disorders and represents a complex phenomenon associated with endothelial dysfunction and inflammation. Statins, especially atorvastatin (ATV) and pitavastatin (PTV), are common agents used to control ongoing atherosclerotic events in the body to minimize cardiovascular disease-based deaths. MATERIALS AND METHODS: The present study aimed at comparing the efficacy of ATV and PTV in a cell line model of inflammation. Human saphenous vein cells were treated with TNF-alpha to mimic atherosclerotic conditions, and the cells were divided into 7 groups, including control, DMSO, TNF-alpha (10 ng/mL-6 hours), ATV (50 μM/24 hours), PTV (2 μM/24 hours), ATV (50 μM/24 hours)+TNF-alpha (10 ng/ mL-6 hours) and PTV (2 μM/24 hours)+TNF-alpha (10 ng/mL-6 hours). The expression levels of 20 proinflammatory cytokines and chemokines were investigated in these groups using a human atherosclerosis antibody array. RESULTS: Possible pathway interactions were determined by STRING and PANTHER analyses. Comparison with the effect of ATV indicated that PTV reduced the levels of 4 proinflammatory cytokines: CCL11, CSF2, CCL20, and TGFB1 (p<0.05). CONCLUSIONS: Pleiotropic effects of pitavastatin against cardiovascular diseases appeared to be better; however, additional studies are required to compare statins and to identify new drugs that maintain broader protection from the risks of cardiovascular diseases

    Maternal and Neonatal Vitamin D Binding Protein Polymorphisms and 25-Hydroxyvitamin D Cutoffs as Determinants of Neonatal Birth Anthropometry

    No full text
    Background: Vitamin D-binding protein (VDBP) is a vital regulator of optimal vitamin D homeostasis and bioavailability. Apart from its well-documented role as a key component in vitamin D dynamic transfer and circulation, it has a myriad of immunoregulatory functions related to innate immunity, which becomes particularly critical in states of increased immunological tolerance including pregnancy. In this regard, VDBP dyshomeostasis is considered to contribute to the development of several fetal, maternal, and neonatal adverse outcomes. However, precise physiological pathways, including the contribution of specific VDBP polymorphisms behind such phenomena, are yet to be fully deciphered. Our aim was to assess the combined effect of maternal and neonatal VDBP polymorphism heterogeneity in conjunction with different maternal and neonatal 25(OH)D cutoffs on the neonatal anthropometric profile at birth. Methods: The study included data and samples from a cohort of 66 mother&ndash;child pairs at birth. The inclusion criterion was full-term pregnancy (gestational weeks 37&ndash;42). Neonatal and maternal 25(OH)D cutoffs were included according to vitamin D status at birth and delivery. Concentrations of 25(OH)D2 and 25(OH)D3 were measured using liquid chromatography&ndash;tandem mass spectrometry. Results: The upper arm length of neonates with 25(OH)D &le; 25 nmol/L was higher in neonate CC carriers for rs2298850. The upper thigh neonatal circumference was also higher in the ones with either 25(OH)D &le; 50 or &le;75 nmol/L in rs2298850 CG + GG or rs4588 GT + TT carriers. We did not observe any significant effect for maternal VDBP polymorphisms nor for birth maternal 25(OH)D concentrations, on birth neonatal anthropometry. Conclusions: Our findings emphasize a potential role for neonatal VDBP genotypes rs2298850 and rs4588, in conjunction with specific neonatal 25(OH)D cutoffs, in the range of sufficiency on neonatal growth and development

    TREM2 variants as a possible cause of frontotemporal dementia with distinct neuroimaging features.

    Get PDF
    Background and purpose: Nasu-Hakola disease (NHD) is a rare, autosomal recessive disorder characterized by skeletal and neurological symptoms. Behavioral symptoms with cognitive impairment may mimic the behavioral variant of frontotemporal dementia (bvFTD) and other early-onset dementias. Our patients were analyzed and the literature was reviewed to delineate neurological and neuroimaging findings suggestive of NHD
    corecore