5 research outputs found

    An Experimental Investigation of Ride Control Algorithms for High-Speed Catamarans Part 1: Reduction of Ship Motions

    Get PDF
    Ride control systems are essential for comfort and operability of high-speed ships, but it remains an open question what is the optimum ride control method. To investigate the motions of a 112-m high-speed catamaran fitted with a ride control system, a 2.5-m model was tested in a towing tank. The model active control system comprised two transom stern tabs and a central T-Foil beneath the bow. Six ideal motion control feedback algorithms were used to activate the model scale ride control system and surfaces in a closed-loop control system: heave control, local motion control, and pitch control, each in a linear and nonlinear version. The responses were compared with the responses with inactive control surfaces and with no control surfaces fitted. The model was tested in head seas at different wave heights and frequencies and the heave and pitch response amplitude operators (RAOs), response phase operators, and acceleration response were measured. It was found that the passive ride control system reduced the peak heave and pitch motions only slightly. The heave and pitch motions were more strongly reduced by their respective control feedback. This was most evident with nonlinear pitch control, which reduced the maximum pitch RAO by around 50% and the vertical acceleration near the bow by about 40% in 60-mm waves (2.69 m at full scale). These reductions were influenced favorably by phase shifts in the model scale system, which effectively contributed both stiffness and damping in the control action

    Response of a high-speed wave-piercing catamaran to an active ride control system

    No full text
    Ride control systems on high-seed vessels are an important design features for improving passenger comfort and reducing motion sickness and dynamic structural loads. To investigate the performance of ride control systems a 2.5m catamaran model based on the 112m INCAT catamaran was tested with an active centre bow mounted T-Foil and two active stern mounted trim tabs. The model was set-up for towing tank tests in calm water to measure the motions response to ride control step inputs. Heave and pitch response were measured when the model was excited by deflections of the T-Foil and the stern tab separately. Appropriate combinations of the control surface deflections were then determined to produce pure heave and pure pitch response. This forms the basis for setting the gains of the ride control system to implement different control algorithms in terms of the heave and pitch motions in encountered waves. A two degree of freedom rigid body analysis was undertaken to theoretically evaluate the experimental results and showed close agreement with the tank test responses. This work gives an insight into the motions control response and forms the basis for future investigations of optimal control algorithms

    An experimental investigation of ride control algorithms for high-speed catamarans Part 2: Mitigation of wave impact loads

    Get PDF
    High‐speed craft frequently experience large wave impact loads due to their large motions and accelerations. One solution to reduce the severity of motion and impact loadings is the installation of ride control systems. Part 1 of this study investigates the influence of control algorithms on the motions of a 112‐m highspeed catamaran using a 2.5‐m model fitted with a ride control system. The present study extends this to investigate the influence of control algorithms on the loads and internal forces acting on a hydroelastic segmented catamaran model. As in Part 1, the model active control system consisted of a center bow T‐Foil and two stern tabs. Six motion control feedback algorithms were used to activate the model‐scale ride control system and surfaces in a closed loop system: local motion, heave, and pitch control, each in a linear and nonlinear application. The loads were further determined with a passive ride control system and without control surfaces fitted for direct comparison. The model was segmented into seven parts, connected by flexible links that replicate the first two natural frequencies and mode shapes of the 112‐m INCAT vessel, enabling isolation and measurement of a center bow force and bending moments at two cross sections along the demi‐hulls. The model was tested in regular head seas at different wave heights and frequencies. From these tests, it was found that the pitch control mode was most effective and in 60‐mm model‐scale waves it significantly reduced the peak slam force by 90% and the average slam‐induced bending moment by 75% when compared with a bare hull without ride controls fitted. This clearly demonstrates the effectiveness of a ride control system in reducing wave impact loads acting on high‐speed catamaran vessels

    An experimental investigation on slamming kinematics, impulse and energy transfer for high-speed catamarans equipped with Ride Control Systems

    No full text
    High‐speed craft frequently experience large wave impact loads due to their large motions and accelerations. One solution to reduce the severity of motion and impact loadings is the installation of ride control systems. Part 1 of this study investigates the influence of control algorithms on the motions of a 112‐m highspeed catamaran using a 2.5‐m model fitted with a ride control system. The present study extends this to investigate the influence of control algorithms on the loads and internal forces acting on a hydroelastic segmented catamaran model. As in Part 1, the model active control system consisted of a center bow T‐Foil and two stern tabs. Six motion control feedback algorithms were used to activate the model‐scale ride control system and surfaces in a closed loop system: local motion, heave, and pitch control, each in a linear and nonlinear application. The loads were further determined with a passive ride control system and without control surfaces fitted for direct comparison. The model was segmented into seven parts, connected by flexible links that replicate the first two natural frequencies and mode shapes of the 112‐m INCAT vessel, enabling isolation and measurement of a center bow force and bending moments at two cross sections along the demi‐hulls. The model was tested in regular head seas at different wave heights and frequencies. From these tests, it was found that the pitch control mode was most effective and in 60‐mm model‐scale waves it significantly reduced the peak slam force by 90% and the average slam‐induced bending moment by 75% when compared with a bare hull without ride controls fitted. This clearly demonstrates the effectiveness of a ride control system in reducing wave impact loads acting on high‐speed catamaran vessels
    corecore