10 research outputs found

    Material Selection and Sizing of a Thermoelectric Generator (TEG) for Power Generation in a Self-Powered Heating System

    Get PDF
    By employing the high temperature heat source to directly generate the electricity needed to power auxiliary systems in a natural gas furnace, boiler or hot water heater, a “self-powered” heating system can provide several benefits. Compared with a traditional furnace, boiler or hot water heater, when overall fuel utilization is kept constant, the self-powered system will have a higher primary energy efficiency, lower operating costs, and dramatically improved building safety and resilience during electric grid outages. Furthermore, a self-powered heating system only has a single utility connection – natural gas, without an electric connection – thus simplifying installation. A thermoelectric generator can be used for direct energy conversion of thermal energy to electricity with no moving parts, which offers a very simple means to provide power for the self-powered heating system, and the operation is without noise or vibration and can thus provide a very long system life. This paper provides an analysis focused on materials selection and the thermal power requirements for a thermoelectric generator (TEG) for use in a self-powered heating system. The dimensionless figure of merit for thermoelectric materials, zT, is used to estimate the optimal efficiency that can be achieved with a TEG to produce the electric power required in such an application. Comparisons of the predicted efficiency, the required heat transfer rate to the TEG and the heat transfer area needed for sustained operation under thermal conditions relevant to the self-powered heating application are made for several potential thermoelectric materials. This analysis was used to develop system requirements for a self-powered hot water heater using a TEG for electric power generation

    Advanced Catalytic Igniters Technology for Small Compact Engine Applications

    No full text
    Development of technologies that allow small, high power density engines such as unmanned aerial vehicles (UAV), unmanned marine vehicles (UMV), and unmanned ground vehicles (UGV) to operate on single logistic fuel such as JP-8 is one of government goals. To advance this goal, a lightweight, compact, and retrofit capable ignition source is critical. Compared to standard spark igniters and noncatalytic glow plugs, the use of catalytic glow plugs will provide benefits of lower required compression ratio, improved igniter life, reduced electrical energy requirements, and overall reduction in system weight and size. Experimental testing demonstrated a significant increase in surface temperature (160+ °C) with impingement of a fuel spray compared to a conventional glow plug with engine testing demonstrating the use of catalyst allows stable engine operation at reduced power requirements. Computational analysis was performed to provide insight into the catalyst behavior. Analytical studies suggested increased stability due to both heat release due to exothermic catalytic reaction and production of reactive species. This technology would allow high power density engines to use heavy fuels, while potentially reducing electric power supply and engine complexity and weight, both of which would allow greater range and/or payload capacity. This paper discusses the feasibility of advanced igniters technology as an enabling component for the use of heavy fuels in small, high power density internal combustion engines. The paper presents and discusses analytical investigation, experimental test results, and durability testing data in an internal combustion engine environment

    Direct Injection Method and Apparatus for Low Nox Combustion of High Hydrogen Fuels, U.S. Patent 8,864,491

    No full text
    A method for low NOx combustion, without premixing of fuel and air prior to passage to a combustor, is provided wherein a fuel is injected into a reaction zone via an eductor thereby inducing an air flow and producing a fuel-rich mixture. The fuel-rich mixture is reacted and produces partial reaction products plus heat. A portion of the heat is to transferred to a cooling air stream and the cooled partial reaction products are brought into contact with the heated cooling air stream for combustion. Increased injection of the fuel results in an increased induction of the air flow

    Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    No full text
    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOEâs goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions

    Proceedings of ASME Turbo Expo 2013: Power for Land, Sea and Air, Volume 1A: Combustion, Fuels and Emissions

    No full text
    Shahrokh Etemad (with Sandeep Alavandi and Benjamin Baird) is a contributing author, Fuel Flexible Rich Catalytic Lean Burn System for Low Btu Fuels
    corecore