7 research outputs found
HER2-enriched subtype and novel molecular subgroups drive aromatase inhibitor resistance and an increased risk of relapse in early ER+/HER2+ breast cancer
BACKGROUND: Oestrogen receptor positive/ human epidermal growth factor receptor positive (ER+/HER2+) breast cancers (BCs) are less responsive to endocrine therapy than ER+/HER2- tumours. Mechanisms underpinning the differential behaviour of ER+HER2+ tumours are poorly characterised. Our aim was to identify biomarkers of response to 2 weeks’ presurgical AI treatment in ER+/HER2+ BCs. METHODS: All available ER+/HER2+ BC baseline tumours (n=342) in the POETIC trial were gene expression profiled using BC360™ (NanoString) covering intrinsic subtypes and 46 key biological signatures. Early response to AI was assessed by changes in Ki67 expression and residual Ki67 at 2 weeks (Ki672wk). Time-To-Recurrence (TTR) was estimated using Kaplan-Meier methods and Cox models adjusted for standard clinicopathological variables. New molecular subgroups (MS) were identified using consensus clustering. FINDINGS: HER2-enriched (HER2-E) subtype BCs (44.7% of the total) showed poorer Ki67 response and higher Ki672wk (p<0.0001) than non-HER2-E BCs. High expression of ERBB2 expression, homologous recombination deficiency (HRD) and TP53 mutational score were associated with poor response and immune-related signatures with High Ki672wk. Five new MS that were associated with differential response to AI were identified. HER2-E had significantly poorer TTR compared to Luminal BCs (HR 2.55, 95% CI 1.14–5.69; p=0.0222). The new MS were independent predictors of TTR, adding significant value beyond intrinsic subtypes. INTERPRETATION: Our results show HER2-E as a standardised biomarker associated with poor response to AI and worse outcome in ER+/HER2+. HRD, TP53 mutational score and immune-tumour tolerance are predictive biomarkers for poor response to AI. Lastly, novel MS identify additional non-HER2-E tumours not responding to AI with an increased risk of relapse
Epigenetic therapy using targeted microbubbles as a potential treatment for breast cancer
Therapeutic efficacy of anti-cancer agents is a critical requirement however it is often limited due to poor delivery of the drugs to the tumour. The aim of this project was to use gas-filled, lipid-shelled microbubbles (MBs) to enhance therapeutic effects of an epigenetic drug, called decitabine (5-aza-2'-deoxycytidine or DAC), against triple-negative breast cancer (TNBC). MB-assisted drug delivery using ultrasound is proposed as a non-invasive approach for controllably triggered drug release, which may protect the drug from rapid degradation, enhance drug efficacy and reduce off-site side effects.
In this study, treatment of human MDA-MB-231 breast cancer cells with low doses of DAC demonstrated up-regulation of epigenetically dysregulated tumour suppressor genes and immune response genes, as well as global DNA demethylation. These assays, alongside inhibition of tumour growth, were used as biomarkers for the assessment of DAC delivery in a mouse MDA-MB-231 TNBC xenograft model. To increase the accumulation of therapeutic MBs to the tumour site, vascular endothelial growth factor receptor 2 (VEGFR2) was evaluated as a suitable molecule for DAC delivery. Smaller tumours showed higher VEGFR2 expression in vivo, suggesting that VEGFR2-targeted MB drug delivery would be most effective during that stage of tumour growth. A flow assay verified that VEGFR2-targeted MBs were bound specifically to VEGFR2-expressing mouse endothelial SVR cells in vitro, indicating that enhanced binding to the mouse tumour vasculature is possible.
Results from in vitro studies revealed that when DAC was delivered in combination with ultrasound destruction of MBs or encapsulated in liposomes, epigenetic effects were detected, suggesting that drug delivery was successful. The main in vivo experiment demonstrated that administration of DAC combined with VEGFR2- targeted MBs and ultrasound showed activation of tumour suppressor genes previously silenced by DNA methylation, as well as inhibition of tumour growth. These results suggest that delivery of DAC in this way could improve drug therapeutic efficacy, prime tumours for secondary anti-cancer agents and potentially reduce the required dose resulting in decreased off-site toxicities
Interleukin-1 Receptor-Associated Kinase 4 Deficiency in a Greek Teenager
Background. Human interleukin- (IL-) 1 receptor-associated kinase 4 (IRAK-4) deficiency is a recently described primary immunodeficiency. It is a rare, autosomal recessive immunodeficiency that impairs toll/IL-1R immunity, except for the toll-like receptor (TLR) 3- and TLR4-interferon alpha (IFNA)/beta (IFNB) pathways. Case Report. We report the first patient in Greece with IRAK-4 deficiency. From the age of 8 months, she presented with recurrent infections of the upper and lower respiratory tract and skin abscesses. For this, she had been repeatedly hospitalized and treated empirically with intravenous antibiotics. No severe viral, mycobacterial, or fungal infections were noted. Her immunological laboratory evaluation revealed low serum IgA and restored in subsequent measurements; normal IgG, IgM, and IgE; and normal serum IgG subclasses. Peripheral blood immunophenotyping by flow cytometry and dihydrorhodamine (DHR) test revealed normal counts. She was able to make functional antibodies against vaccine antigens, including tetanus and diphtheria. She was administered with empirical IgG substitution for 5 years until the age of 12 years, and she has never experienced invasive bacterial infections so far. DNA analysis revealed a heterozygous variant in the patient: c.823delT (p.S275fs∗13 at protein level) in the IRAK4 gene. Conclusions. The importance of clinical suspicion is emphasized in order to confirm the diagnosis by IRAK4 gene sequencing and provide the appropriate treatment for this rare primary immunodeficiency, as soon as possible
The Role of TLR4 Asp299Gly and TLR4 Thr399Ile Polymorphisms in the Pathogenesis of Urinary Tract Infections: First Evaluation in Infants and Children of Greek Origin
Urinary tract infections are one of the most common and serious bacterial infections in a pediatric population. So far, they have mainly been related to age, gender, ethnicity, socioeconomic level, and the presence of underlying anatomical or functional, congenital, or acquired abnormalities. Recently, both innate and adaptive immunities and their interaction in the pathogenesis and the development of UTIs have been studied. The aim of this study was to assess the role and the effect of the two most frequent polymorphisms of TLR4 Asp299Gly and Thr399Ile on the development of UTIs in infants and children of Greek origin. We studied 51 infants and children with at least one episode of acute urinary tract infection and 109 healthy infants and children. We found that 27.5% of patients and 8.26% of healthy children carried the heterozygote genotype for TLR4 Asp299Gly. TLR4 Thr399Ile polymorphism was found to be higher in healthy children and lower in the patient group. No homozygosity for both studied polymorphisms was detected in our patients. In the group of healthy children, a homozygote genotype for TLR4 Asp299Gly (G/G) as well as for TLR4 Thr399Ile (T/T) was showed (1.84% and 0.92 respectively). These results indicate the role of TLR4 polymorphism as a genetic risk for the development of UTIs in infants and children of Greek origin
Molecular profiling of aromatase inhibitor sensitive and resistant ER+HER2- postmenopausal breast cancers
AbstractAromatase inhibitors (AIs) reduce recurrences and mortality in postmenopausal patients with oestrogen receptor positive (ER+) breast cancer (BC), but >20% of patients will eventually relapse. Given the limited understanding of intrinsic resistance in these tumours, here we conduct a large-scale molecular analysis to identify features that impact on the response of ER + HER2- BC to AI. We compare the 15% of poorest responders (PRs, n = 177) as measured by proportional Ki67 changes after 2 weeks of neoadjuvant AI to good responders (GRs, n = 190) selected from the top 50% responders in the POETIC trial and matched for baseline Ki67 categories. In this work, low ESR1 levels are associated with poor response, high proliferation, high expression of growth factor pathways and non-luminal subtypes. PRs having high ESR1 expression have similar proportions of luminal subtypes to GRs but lower plasma estradiol levels, lower expression of estrogen response genes, higher levels of tumor infiltrating lymphocytes and immune markers, and more TP53 mutations.</jats:p
HER2-enriched subtype and novel molecular subgroups drive aromatase inhibitor resistance and an increased risk of relapse in early ER+/HER2+ breast cancer
BACKGROUND: Oestrogen receptor positive/ human epidermal growth factor receptor positive (ER+/HER2+) breast cancers (BCs) are less responsive to endocrine therapy than ER+/HER2- tumours. Mechanisms underpinning the differential behaviour of ER+HER2+ tumours are poorly characterised. Our aim was to identify biomarkers of response to 2 weeks’ presurgical AI treatment in ER+/HER2+ BCs. METHODS: All available ER+/HER2+ BC baseline tumours (n=342) in the POETIC trial were gene expression profiled using BC360™ (NanoString) covering intrinsic subtypes and 46 key biological signatures. Early response to AI was assessed by changes in Ki67 expression and residual Ki67 at 2 weeks (Ki67(2wk)). Time-To-Recurrence (TTR) was estimated using Kaplan-Meier methods and Cox models adjusted for standard clinicopathological variables. New molecular subgroups (MS) were identified using consensus clustering. FINDINGS: HER2-enriched (HER2-E) subtype BCs (44.7% of the total) showed poorer Ki67 response and higher Ki67(2wk) (p<0.0001) than non-HER2-E BCs. High expression of ERBB2 expression, homologous recombination deficiency (HRD) and TP53 mutational score were associated with poor response and immune-related signatures with High Ki67(2wk). Five new MS that were associated with differential response to AI were identified. HER2-E had significantly poorer TTR compared to Luminal BCs (HR 2.55, 95% CI 1.14–5.69; p=0.0222). The new MS were independent predictors of TTR, adding significant value beyond intrinsic subtypes. INTERPRETATION: Our results show HER2-E as a standardised biomarker associated with poor response to AI and worse outcome in ER+/HER2+. HRD, TP53 mutational score and immune-tumour tolerance are predictive biomarkers for poor response to AI. Lastly, novel MS identify additional non-HER2-E tumours not responding to AI with an increased risk of relapse. FUNDING: Cancer Research UK (CRUK/07/015)
HER2-enriched subtype and novel molecular subgroups drive aromatase inhibitor resistance and an increased risk of relapse in early ER+/HER2+ breast cancer
Background: oestrogen receptor positive/ human epidermal growth factor receptor positive (ER+/HER2+) breast cancers (BCs) are less responsive to endocrine therapy than ER+/HER2- tumours. Mechanisms underpinning the differential behaviour of ER+HER2+ tumours are poorly characterised. Our aim was to identify biomarkers of response to 2 weeks’ presurgical AI treatment in ER+/HER2+ BCs. Methods: all available ER+/HER2+ BC baseline tumours (n=342) in the POETIC trial were gene expression profiled using BC360™ (NanoString) covering intrinsic subtypes and 46 key biological signatures. Early response to AI was assessed by changes in Ki67 expression and residual Ki67 at 2 weeks (Ki67 2wk). Time-To-Recurrence (TTR) was estimated using Kaplan-Meier methods and Cox models adjusted for standard clinicopathological variables. New molecular subgroups (MS) were identified using consensus clustering. Findings: HER2-enriched (HER2-E) subtype BCs (44.7% of the total) showed poorer Ki67 response and higher Ki67 2wk (p<0.0001) than non-HER2-E BCs. High expression of ERBB2 expression, homologous recombination deficiency (HRD) and TP53 mutational score were associated with poor response and immune-related signatures with High Ki67 2wk. Five new MS that were associated with differential response to AI were identified. HER2-E had significantly poorer TTR compared to Luminal BCs (HR 2.55, 95% CI 1.14–5.69; p=0.0222). The new MS were independent predictors of TTR, adding significant value beyond intrinsic subtypes. Interpretation: our results show HER2-E as a standardised biomarker associated with poor response to AI and worse outcome in ER+/HER2+. HRD, TP53 mutational score and immune-tumour tolerance are predictive biomarkers for poor response to AI. Lastly, novel MS identify additional non-HER2-E tumours not responding to AI with an increased risk of relapse. Funding: Cancer Research UK (CRUK/07/015). </p