6 research outputs found

    Evolution by leaps : gene duplication in bacteria

    Get PDF
    © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biology Direct 4 (2009): 46, doi:10.1186/1745-6150-4-46.Sequence related families of genes and proteins are common in bacterial genomes. In Escherichia coli they constitute over half of the genome. The presence of families and superfamilies of proteins suggest a history of gene duplication and divergence during evolution. Genome encoded protein families, their size and functional composition, reflect metabolic potentials of the organisms they are found in. Comparing protein families of different organisms give insight into functional differences and similarities. Equivalent enzyme families with metabolic functions were selected from the genomes of four experimentally characterized bacteria belonging to separate genera. Both similarities and differences were detected in the protein family memberships, with more similarities being detected among the more closely related organisms. Protein family memberships reflected known metabolic characteristics of the organisms. Differences in divergence of functionally characterized enzyme family members accounted for characteristics of taxa known to differ in those biochemical properties and capabilities. While some members of the gene families will have been acquired by lateral exchange and other former family members will have been lost over time, duplication and divergence of genes and functions appear to have been a significant contributor to the functional diversity of today’s microbes. Protein families seem likely to have arisen during evolution by gene duplication and divergence where the gene copies that have been retained are the variants that have led to distinct bacterial physiologies and taxa. Thus divergence of the duplicate enzymes has been a major process in the generation of different kinds of bacteria.This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-08ER64511

    A service development study of the assessment and management of fracture risk in Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is associated with an increased risk of fragility fracture. FRAX and Qfracture are risk calculators that estimate the 10-year risk of hip and major fractures and guide definitive investigation for osteoporosis using dual X-ray absorptiometry (DEXA) imaging. It is unclear which PD patients should be considered for fracture risk assessment and whether FRAX or Qfracture should be used. Seventy-seven patients with PD were recruited in the movement disorders clinic. Data were collected on PD-related characteristics and fracture risk scores were calculated. Patients with previous osteoporotic fractures had a higher incidence of falls (p = 0.0026) and use of bilateral walking aids (p = 0.0187) in addition to longer disease duration (p = 0.0037). Selecting patients with falls in combination with either disease duration >5 years, bilateral walking aids, or previous osteoporotic fracture distinguished patients with and without previous osteoporotic fracture with specificity 67.7 % (95 % CI 55.0-78.8) and sensitivity 100.0 % (95 % CI 73.5-100.0). Qfracture calculated significantly higher fracture risk scores than FRAX for hip (p < 0.0001) and major (p = 0.0008) fracture in PD patients. Receiver operating characteristic curves demonstrated that FRAX outperformed Qfracture with an area under the curve of 0.84 (95 % CI 0.70-0.97, p = 0.0004) for FRAX and 0.68 (95 % CI 52-86, p = 0.0476) for Qfracture major fracture risk calculators. We suggest that falls in combination with either a disease duration longer than 5 years or bilateral walking aids or previous osteoporotic fracture should be used as red flags in PD patients to prompt clinicians to perform a FRAX fracture risk assessment in the neurology clinic

    Identical sets of methylated and nonmethylated genes in Ciona intestinalis sperm and muscle cells

    Get PDF
    BACKGROUND: The discovery of gene body methylation, which refers to DNA methylation within gene coding region, suggests an as yet unknown role of DNA methylation at actively transcribed genes. In invertebrates, gene bodies are the primary targets of DNA methylation, and only a subset of expressed genes is modified. RESULTS: Here we investigate the tissue variability of both the global levels and distribution of 5-methylcytosine (5mC) in the sea squirt Ciona intestinalis. We find that global 5mC content of early developmental embryos is high, but is strikingly reduced in body wall tissues. We chose sperm and adult muscle cells, with high and reduced levels of global 5mC respectively, for genome-wide analysis of 5mC targets. By means of CXXC-affinity purification followed by deep sequencing (CAP-seq), and genome-wide bisulfite sequencing (BS-seq), we designated body-methylated and unmethylated genes in each tissue. Surprisingly, body-methylated and unmethylated gene groups are identical in the sperm and muscle cells. Our analysis of microarray expression data shows that gene body methylation is associated with broad expression throughout development. Moreover, transgenic analysis reveals contrasting gene body methylation at an identical gene-promoter combination when integrated at different genomic sites. CONCLUSIONS: We conclude that gene body methylation is not a direct regulator of tissue specific gene expression in C. intestinalis. Our findings reveal constant targeting of gene body methylation irrespective of cell type, and they emphasize a correlation between gene body methylation and ubiquitously expressed genes. Our transgenic experiments suggest that the promoter does not determine the methylation status of the associated gene body

    Identical sets of methylated and nonmethylated genes in Ciona intestinalis sperm and muscle cells

    Get PDF
    Abstract Background The discovery of gene body methylation, which refers to DNA methylation within gene coding region, suggests an as yet unknown role of DNA methylation at actively transcribed genes. In invertebrates, gene bodies are the primary targets of DNA methylation, and only a subset of expressed genes is modified. Results Here we investigate the tissue variability of both the global levels and distribution of 5-methylcytosine (5mC) in the sea squirt Ciona intestinalis. We find that global 5mC content of early developmental embryos is high, but is strikingly reduced in body wall tissues. We chose sperm and adult muscle cells, with high and reduced levels of global 5mC respectively, for genome-wide analysis of 5mC targets. By means of CXXC-affinity purification followed by deep sequencing (CAP-seq), and genome-wide bisulfite sequencing (BS-seq), we designated body-methylated and unmethylated genes in each tissue. Surprisingly, body-methylated and unmethylated gene groups are identical in the sperm and muscle cells. Our analysis of microarray expression data shows that gene body methylation is associated with broad expression throughout development. Moreover, transgenic analysis reveals contrasting gene body methylation at an identical gene-promoter combination when integrated at different genomic sites. Conclusions We conclude that gene body methylation is not a direct regulator of tissue specific gene expression in C. intestinalis. Our findings reveal constant targeting of gene body methylation irrespective of cell type, and they emphasize a correlation between gene body methylation and ubiquitously expressed genes. Our transgenic experiments suggest that the promoter does not determine the methylation status of the associated gene body
    corecore