2,599 research outputs found

    Integration of production and financial models to analyse the financial impact of livestock diseases: a case study of Schmallenberg virus disease on British and French dairy farms

    Get PDF
    AIMS AND OBJECTIVES: The aim of the study was to investigate and compare the financial impact of Schmallenberg disease for different dairy production types in the United Kingdom and France. MATERIALS AND METHODS: Integrated production and financial models for dairy cattle were developed and applied to Schmallenberg virus (SBV) disease in a British and French context. The five main production systems that prevail in these two countries were considered. Their respective gross margins measuring the holding's profitability were calculated based on public benchmarking, literature and expert opinion data. A partial budget analysis was performed within each production model to estimate the impact of SBV in the systems modelled. Two disease scenarios were simulated: low impact and high impact. RESULTS: The model gross margin obtained per cow space and year ranged from £1014 to £1484 for the UK and from £1037 to £1890 for France depending on the production system considered. In the UK, the net SBV disease costs in £/cow space/year for an average dairy farm with 100 milking spaces were estimated between £16.3 and £51.4 in the high-impact scenario and between £8.2 and £25.9 in the low-impact scenario. For France, the net SBV disease costs in £/cow space/year ranged from £19.6 to £48.6 in the high-impact scenario and £9.7 to £22.8 in the low-impact scenario, respectively. CONCLUSION: The study illustrates how the combination of production and financial models allows assessing disease impact taking into account differing management and husbandry practices and associated price structures in the dairy sector. It supports decision-making of farmers and veterinarians who are considering disease control measures as it provides an approach to estimate baseline disease impact in common dairy production systems in the UK and France

    Taxonomic Novelty and Distinctive Genomic Features of Hot Spring Cyanobacteria

    Get PDF
    Several cyanobacterial species are dominant primary producers in hot spring microbial mats. To date, hot spring cyanobacterial taxonomy, as well as the evolution of their genomic adaptations to high temperatures, are poorly understood, with genomic information currently available for only a few dominant genera, including Fischerella and Synechococcus. To address this knowledge gap, the present study expands the genomic landscape of hot spring cyanobacteria and traces the phylum-wide genomic consequences of evolution in high temperature environments. From 21 globally distributed hot spring metagenomes, with temperatures between 32 and 75 degrees C, 57 medium- and high-quality cyanobacterial metagenome-assembled genomes were recovered, representing taxonomic novelty for 1 order, 3 families, 15 genera and 36 species. Comparative genomics of 93 hot spring genomes (including the 57 metagenome-assembled genomes) and 66 non-thermal genomes, showed that the former have smaller genomes and a higher GC content, as well as shorter proteins that are more hydrophilic and basic, when compared to the non-thermal genomes. Additionally, the core accessory orthogroups from the hot spring genomes of some genera had a greater abundance of functional categories, such as inorganic ion metabolism, translation and post-translational modifications. Moreover, hot spring genomes showed increased abundances of inorganic ion transport and amino acid metabolism, as well as less replication and transcription functions in the protein coding sequences. Furthermore, they showed a higher dependence on the CRISPR-Cas defense system against exogenous nucleic acids, and a reduction in secondary metabolism biosynthetic gene clusters. This suggests differences in the cyanobacterial response to environment-specific microbial communities. This phylum-wide study provides new insights into cyanobacterial genomic adaptations to a specific niche where they are dominant, which could be essential to trace bacterial evolution pathways in a warmer world, such as the current global warming scenario

    Precision Measurement of the Radiative B\Beta Decay of the Free Neutron

    Get PDF
    The standard model predicts that, in addition to a proton, an electron, and an antineutrino, a continuous spectrum of photons is emitted in the β\beta decay of the free neutron. We report on the RDK II experiment which measured the photon spectrum using two different detector arrays. An annular array of bismuth germanium oxide scintillators detected photons from 14 to 782~keV. The spectral shape was consistent with theory, and we determined a branching ratio of 0.00335 ±\pm 0.00005 [stat] ±\pm 0.00015 [syst]. A second detector array of large area avalanche photodiodes directly detected photons from 0.4 to 14~keV. For this array, the spectral shape was consistent with theory, and the branching ratio was determined to be 0.00582 ±\pm 0.00023 [stat] ±\pm 0.00062 [syst]. We report the first precision test of the shape of the photon energy spectrum from neutron radiative decay and a substantially improved determination of the branching ratio over a broad range of photon energies
    • …
    corecore