6 research outputs found

    Application of different mathematical models based on artificial intelligence technique to predict the concentration distribution of solute through a polymeric membrane

    No full text
    Membrane-based purification of therapeutic agents has recently attracted global attention as a promising replacement for conventional techniques like distillation and pervaporation. Despite the conduction of different investigations, development of more research about the operational feasibility of using polymeric membranes to separate the detrimental impurities of molecular entities is of great importance. The focus of this paper is to develop a numerical strategy based on multiple machine learning methods to predict the concentration distribution of solute through a membrane-based separation process. Two inputs are being analyzed in this study, specifically r and z. Furthermore, the single target output is C, and the number of data points exceeds 8000. To analyze and model the data for this study, we used the Adaboost (Adaptive Boosting) model over three different base learners (K-Nearest Neighbors (KNN), Linear Regression (LR), and Gaussian Process Regression (GPR)). In the process of hyper-parameter optimization for models, the BA optimization algorithm applied on the adaptive boosted models. Finally, Boosted KNN, Boosted LR, and Boosted GPR have scores of 0.9853, 0.8751, and 0.9793 in terms of R2 metric. Based on the recent fact and other analyses, boosted KNN model is introduced as the most appropriate model of this research. The error rates for this model are 2.073 × 101 and 1.06 × 10−2 in terms of MAE and MAPE metrics

    Farnesiferol C Exerts Antiproliferative Effects on Hepatocellular Carcinoma HepG2 Cells by Instigating ROS-Dependent Apoptotic Pathway

    No full text
    Farnesiferol C (Far-C) is a coumarin commonly extracted from Ferula asafetida and is popularly used as a traditional source of natural remedy. Liver cancer or hepatocellular carcinoma (HCC) has emerged as a major cause behind cancer burden, and limited therapeutic interventions have further aggravated the clinical management of HCC. In the present study, the authors tested the hypothesis that Far-C-instigated oxidative stress resulted in anti-proliferation and apoptosis instigation within human liver cancer HepG2 cells. The observations reported herewith indicated that Far-C exerted considerable cytotoxic effects on HepG2 cells by reducing the cell viability (p p p Bax, Bad, and Bcl2) along with genes exerting regulatory effects on cell cycle (cyclinD1) and its progression (p21Cip1 and CDK4). The evidence thus clearly shows the preclinical efficacy of Far-C against HepG2 cells. However, further mechanistic investigations deciphering the alteration of different pathways post-Far-C exposure will be highly beneficial

    Validation of a Novel RP-HPLC Technique for Simultaneous Estimation of Lignocaine Hydrochloride and Tibezonium Iodide: Greenness Estimation Using AGREE Penalties

    No full text
    Herein, we reported an HPLC method for the simultaneous determination of tibezonium iodide (TBN) and lignocaine hydrochloride (LGN). The method was developed according to the International Conference for Harmonization guidelines (ICH) Q2R1 using Agilent® 1260 with a mobile phase consisting of acetonitrile and phosphate buffer (pH 4.5) in a volumetric ratio of 70:30 and flowing through a C8 Agilent® column at 1 mL/min. The results revealed that TBN and LGN peaks were isolated at 4.20 and 2.33 min, respectively, with a resolution of 2.59. The accuracy of TBN and LGN was calculated to be 100.01 ± 1.72% and 99.05 ± 0.65% at 100% concentration, respectively. Similarly, the respective precision was 100.03 ± 1.61% and 99.05 ± 0.48%. The repeatability for TBN and LGN was found to be 99.05 ± 0.48% and 99.19 ± 1.72%, respectively, indicating that the method was precise. The respective regression co-efficient (r2) for TBN and LGN was found to be 0.9995 and 0.9992. Moreover, the LOD and LOQ values for TBN were 0.012 and 0.037 µg/mL, respectively, while for LGN, they were 0.115 and 0.384 µg/mL, respectively. The calculated greenness of the method for ecological safety was found to be 0.83, depicting a green contour on the AGREE scale. No interfering peaks were found when the analyte was estimated in dosage form and in volunteers’ saliva, depicting the specificity of the method. Conclusively, a robust, fast, accurate, precise and specific method was successfully validated to estimate TBN and LGN

    Can natural products targeting EMT serve as the future anticancer therapeutics?

    No full text
    Cancer is the leading cause of death and has remained a big challenge for the scientific community. Because of the growing concerns, new therapeutic regimens are highly demanded to decrease the global burden. Despite advancements in chemotherapy, drug resistance is still a major hurdle to successful treatment. The primary challenge should be identifying and developing appropriate therapeutics for cancer patients to improve their survival. Multiple pathways are dysregulated in cancers, including disturbance in cellular metabolism, cell cycle, apoptosis, or epigenetic alterations. Over the last two decades, natural products have been a major research interest due to their therapeutic potential in various ailments. Natural compounds seem to be an alternative option for cancer management. Natural substances derived from plants and marine sources have been shown to have anti-cancer activity in preclinical settings. They might be proved as a sword to kill cancerous cells. The present review attempted to consolidate the available information on natural compounds derived from plants and marine sources and their anti-cancer potential underlying EMT mechanisms

    3-Methoxy Carbazole Impedes the Growth of Human Breast Cancer Cells by Suppressing NF-κB Signaling Pathway

    No full text
    Breast cancer represents the most frequently occurring cancer globally among women. As per the recent report of the World Health Organization (WHO), it was documented that by the end of the year 2020, approximately 7.8 million females were positively diagnosed with breast cancer and in 2020 alone, 685,000 casualties were documented due to breast cancer. The use of standard chemotherapeutics includes the frontline treatment option for patients; however, the concomitant side effects represent a major obstacle for their usage. Carbazole alkaloids are one such group of naturally-occurring bioactive compounds belonging to the Rutaceae family. Among the various carbazole alkaloids, 3-Methoxy carbazole or C13H11NO (MHC) is obtained from Clausena heptaphylla as well as from Clausena indica. In this study, MHC was investigated for its anti-breast cancer activity based on molecular interactions with specific proteins related to breast cancer, where the MHC had predicted binding affinities for NF-κB with −8.3 kcal/mol. Furthermore, to evaluate the biological activity of MHC, we studied its in vitro cytotoxic effects on MCF-7 cells. This alkaloid showed significant inhibitory effects and induced apoptosis, as evidenced by enhanced caspase activities and the cellular generation of ROS. It was observed that a treatment with MHC inhibited the gene expression of NF-kB in MCF-7 breast cancer cells. These results suggest that MHC could be a promising medical plant for breast cancer treatment. Further studies are needed to understand the molecular mechanisms behind the anticancer action of MHC
    corecore