6 research outputs found

    Structural Ceramic Batteries Using an Earth-Abundant Waterglass Binder

    No full text
    Paper source dat

    A bio-inspired approach to increase device-level energy density

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages 120-153).Battery research has historically focused on improving the properties of the active materials that directly store energy. This research has resulted in active materials with higher specific capacity, increased the voltage of batteries in order to store more energy per electron, and lead to the development of electrolytes and binders compatible with high-performance active materials. However, Lithium-Ion Batteries (LIB) are nearing the limits of energy density achievable using a traditional battery design. Structural batteries are a fundamentally distinct route to optimize device performance, aiming to replace structural materials such as metals, plastics, and composites with multifunctional energy-storing materials. By increasing the device mass fraction that is devoted to energy storage, this strategy could more than double the battery life of electronic devices without requiring improved active materials. In this thesis, I show that rigid, load-bearing electrodes suitable for structural batteries can be fabricated using a novel silicate binder. This binder .can be used to distribute load both within layers and throughout the battery by adhering adjacent battery layers. This innovation turns the entire battery stack into a novel monolithic engineering ceramic referred to as a Structural Ceramic Battery (SCB). Unlike previously published binders, this material does not soften with the introduction of electrolyte, it promotes charge transport within the electrode, and it is compatible with a range of active materials employed in batteries today. This thesis furthermore outlines versatile manufacturing methods making it possible to produce SCBs with a wide variety of shapes and form factors amenable to large-scale production. It is envisioned that this SCB architecture will be used to improve the energy density of both ground-based and flying electric vehicles, and that as improved active material chemistries are discovered they will be dropped in to this architecture in order to promote future increases in vehicle-level energy density.by Alan Ransil.Ph. D

    Electronic transport in LNMO, a high-voltage cathode material for Lithium-Ion batteries

    No full text
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, February 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 86-90).Potential routes by which the energy densities of lithium-ion batteries may be improved abound. However, the introduction of Lithium Nickel Manganese Oxide (LixNi1i/2Mn3/2O4, or LNMO) as a positive electrode material appears to be one of the shortest. LNMO is a high-voltage material, with a voltage of 4.7V, and thus offers a significant energy density boost without straying far outside of the stability window of common carbonate-based electrolytes. Furthermore, it would serve as a drop-in replacement for the positive electrode materials already used. In order to best engineer such devices to take full advantage of the intrinsic transport properties of the material, it is important to develop an understanding of what these transport properties are. For a deep understanding of the material such properties must be related not only to material performance but to the processing conditions and atomic structure of the material. The material may be processed such that it belongs in either the P4 332 or the Fd3m space group, exhibiting either order or disorder respectively of Ni and Mn cations. Such processing has a great effect on the concentrations of electronic charge carriers, and thus an effect on the DC electronic conductivity of the material. This conductivity was thus measured for both processing conditions as a function of the lithiation state, and then related to carrier concentrations via the small polaron model for charge conduction. In such a way, the links betweer processing, structure and properties of this material were elucidated. It is hoped that this work will be built upon in order to engineer the high energy-density batteries of the future.by Alan Patrick Adams Ransil.S.M

    Highly Adjustable 3D Nano-Architectures and Chemistries via Assembled 1D Biological Templates

    No full text
    Porous metal nanofoams have made significant contributions to a diverse set of technologies from separation and filtration to aerospace. Nonetheless, finer control over nano and microscale features must be gained to reach the full potential of these materials in energy storage, catalytic, and sensing applications. As biologics naturally occur and assemble into nano and micro architectures, templating on assembled biological materials enables nanoscale architectural control without the limited chemical scope or specialized equipment inherent to alternative synthetic techniques. Here, we rationally assemble 1D biological templates into scalable, 3D structures to fabricate metal nanofoams with a variety of genetically programmable architectures and material chemistries. We demonstrate that nanofoam architecture can be modulated by manipulating viral assembly, specifically by editing the viral surface coat protein, as well as altering templating density. These architectures were retained over a broad range of compositions including monometallic and bi-metallic combinations of noble and transition metals of copper, nickel, cobalt, and gold. Phosphorous and boron incorporation was also explored. In addition to increasing the surface area over a factor of 50, as compared to the nanofoamā€™s geometric footprint, this process also resulted in a decreased average crystal size and altered phase composition as compared to non-templated controls. Finally, templated hydrogels were deposited on the centimeter scale into an array of substrates as well as free standing foams, demonstrating the scalability and flexibility of this synthetic method towards device integration. As such, we anticipate that this method will provide a platform to better study the synergistic and de-coupled effects between nano-structure and composition for a variety of applications including energy storage, catalysis, and sensing

    Genetic Control of Aerogel and Nanofoam Properties, Applied to Niā€“MnO x Cathode Design

    No full text
    Aerogels are ultralight porous materials whose matrix structure can be formed by interlinking 880 nm long M13 phage particles. In theory, changing the phage properties would alter the aerogel matrix, but attempting this using the current production system leads to heterogeneous lengths. A phagemid system that yields a narrow length distribution that can be tuned in 0.3 nm increments from 50 to 2500 nm is designed and, independently, the persistence length varies from 14 to 68 nm by mutating the coat protein. A robotic workflow that automates each step from DNA construction to aerogel synthesis is used to build 1200 aerogels. This is applied to compare Niā€“MnOx cathodes built using different matrixes, revealing a pareto-optimal relationship between performance metrics. This work demonstrates the application of genetic engineering to create ā€œtuning knobsā€ to sweep through material parameter space; in this case, toward creating a physically strong and high-capacity battery

    Highly adjustable 3D nano-architectures and chemistries

    No full text
    Porous metal nanofoams have made significant contributions to a diverse set of technologies from separation and filtration to aerospace. Nonetheless, finer control over nano and microscale features must be gained to reach the full potential of these materials in energy storage, catalytic, and sensing applications. As biologics naturally occur and assemble into nano and micro architectures, templating on assembled biological materials enables nanoscale architectural control without the limited chemical scope or specialized equipment inherent to alternative synthetic techniques. Here, we rationally assemble 1D biological templates into scalable, 3D structures to fabricate metal nanofoams with a variety of genetically programmable architectures and material chemistries. We demonstrate that nanofoam architecture can be modulated by manipulating viral assembly, specifically by editing the viral surface coat protein, as well as altering templating density. These architectures were retained over a broad range of compositions including monometallic and bi-metallic combinations of noble and transition metals of copper, nickel, cobalt, and gold. Phosphorous and boron incorporation was also explored. In addition to increasing the surface area over a factor of 50, as compared to the nanofoam's geometric footprint, this process also resulted in a decreased average crystal size and altered phase composition as compared to non-templated controls. Finally, templated hydrogels were deposited on the centimeter scale into an array of substrates as well as free standing foams, demonstrating the scalability and flexibility of this synthetic method towards device integration. As such, we anticipate that this method will provide a platform to better study the synergistic and de-coupled effects between nano-structure and composition for a variety of applications including energy storage, catalysis, and sensing.United States. Army Research Office (Grant W911NF-09-0001)National Science Foundation (U.S.) (Grant DMR-0819762)National Science Foundation (U.S.). Graduate Research Fellowship (NSFGRFP
    corecore