13 research outputs found

    Colloidal Stability of Gold Nanoparticles Coated with Multithiol-Poly(ethylene glycol) Ligands: Importance of Structural Constraints of the Sulfur Anchoring Groups

    No full text
    Gold nanoparticles (AuNPs) coated with a series of poly­(ethylene glycol) (PEG) ligands appended with four different sulfur-based terminal anchoring groups (monothiol, flexible dithiol, constrained dithiol, disulfide) were prepared to explore how the structures of the sulfur-based anchoring groups affect the colloidal stability in aqueous media. The PEG-coated AuNPs were prepared by ligand exchange of citrate-stabilized AuNPs with each ligand. The colloidal stability of the AuNPs in different harsh environmental conditions was monitored visually and spectroscopically. The AuNPs coated with dithiol- or disulfide-PEG exhibited improved stability under high salt concentration and against ligand replacement competition with dithiothreitol compared with those coated with their monothiol counterpart. Importantly, the ligands with structurally constrained dithiol or disulfide showed better colloidal stability and higher sulfur coverage on the Au surface compared to the ligands with more flexible dithiol and monothiol. X-ray photoelectron spectroscopy also revealed that the disulfide-PEG ligand had the highest S coverage on Au surface on the Au surface among the ligands studied. This result was supported by energy minimization modeling studies: the structurally more constrained disulfide ligand has the shortest S–S distance and could pack more densely on the Au surface. The experimental results indicate that the colloidal stability of the AuNPs is systematically enhanced in the following order: monothiol < flexible dithiol < constrained dithiol < disulfide. The present study indicates that the colloidal stability of thiolated ligand-functionalized AuNPs can be enhanced by (i) a multidentate chelating effect and (ii) use of the constrained and compact structure of the multidentate anchoring groups

    Synthesis and Characterization of PEGylated Luminescent Gold Nanoclusters Doped with Silver and Other Metals

    No full text
    Doping of fluorescent noble metal nanoclusters is being pursued to manipulate the structure of such materials along with improving physicochemical characteristics such as long-term stability and photoluminescence quantum yield. Here, we synthesize metal-doped and alloyed ultrasmall gold nanoclusters (AuNCs) directly in water using a facile one-step coreduction reaction with bidentate dithiolane PEGylated ligands that terminate in different functional groups including a methoxy, carboxy, amine, and azide. Two primary types of cluster materials were the focus of synthesis and characterization: first, a series of doped/alloyed Ag-doped AuNCs, where the ratio of Au:Ag was varied across a wide range including 99:1, 98:2, 90:10, 80:20, 50:50, 20:80, 10:90, and 2:98 along with pure AuNC and AgNC controls; second, doped Au:D NCs, where D included Pt, Cu, Zn, and Cd. Physical characterization of the modified AuNCs included TEM analysis of size, XPS/EDX analysis of dopant content, and a detailed analysis of photophysical properties including absorption and photoluminescence profiles, quantum yields over time, photoluminescence lifetimes, and examination of energy levels for selected materials. The addition of just a few Ag dopant atoms per AuNC yielded significant enhancement in quantum yield along with improving long-term photostability especially in comparison to materials with a very high Ag content. Preliminary cell imaging applications of the Ag-doped AuNCs were also investigated. Facilitated cellular uptake by mammalian cells via endocytosis following modification with cell penetrating peptides was confirmed by colabeling with specific cellular markers. Long-term intracellular photostability and lack of aggregation were confirmed with microinjection studies, and cytoviability assays showed the doped clusters to be minimally toxic

    Purple‑, Blue‑, and Green-Emitting Multishell Alloyed Quantum Dots: Synthesis, Characterization, and Application for Ratiometric Extracellular pH Sensing

    No full text
    We report the synthesis of a series of Cd<sub><i>x</i></sub>Zn<sub>1–<i>x</i></sub>Se/Cd<sub><i>y</i></sub>Zn<sub>1–<i>y</i></sub>S/ZnS and ZnSe/Cd<sub><i>y</i></sub>Zn<sub>1–<i>y</i></sub>S/ZnS multishell alloyed luminescent semiconductor quantum dots (QDs) with fluorescence maxima ranging from 410 to 530 nm which cover the purple, blue, and green portion of the spectrum. Their subsequent surface modification to prepare water-soluble blue-emitting QDs, characterization, and application for ratiometric pH sensing in aqueous buffers and in an extracellular environment are further described. QDs were synthesized starting from ZnSe cores, and the fluorescence peak positions were tuned by (i) cation exchange with cadmium ions and/or (ii) overcoating with Cd<sub><i>y</i></sub>Zn<sub>1–<i>y</i></sub>S layers. The as-prepared QDs had reasonably high fluorescence quantum yields (∼30–55%), narrow fluorescence bands (fwhm ∼25–35 nm), and monodispersed semispherical shapes. Ligand exchange with hydrophilic compact ligands was successfully carried out to prepare a series of water-soluble blue-emitting QDs. QDs coated with the hydrophilic compact ligands preserved the intrinsic photophysical properties well and showed excellent colloidal stability in aqueous buffers for over a year. The blue-emitting QDs were further conjugated with the pH-sensitive dye, fluorescein isothiocyanate (FITC), to construct a fluorescence resonance energy transfer-based ratiometric pH sensing platform, and pH monitoring with the QD-FITC conjugates was successfully demonstrated at pHs ranging between 3 and 7.5. Further assembly of the QD-FITC conjugates with membrane localization peptides allowed monitoring of the pH in extracellular environments. High quality, water-soluble blue-emitting QDs coated with compact ligands can help expand the practical fluorescence range of QDs for a variety of biological applications

    Achieving Effective Terminal Exciton Delivery in Quantum Dot Antenna-Sensitized Multistep DNA Photonic Wires

    No full text
    Assembling DNA-based photonic wires around semiconductor quantum dots (QDs) creates optically active hybrid architectures that exploit the unique properties of both components. DNA hybridization allows positioning of multiple, carefully arranged fluorophores that can engage in sequential energy transfer steps while the QDs provide a superior energy harvesting antenna capacity that drives a Förster resonance energy transfer (FRET) cascade through the structures. Although the first generation of these composites demonstrated four-sequential energy transfer steps across a distance >150 Å, the exciton transfer efficiency reaching the final, terminal dye was estimated to be only ∼0.7% with no concomitant sensitized emission observed. Had the terminal Cy7 dye utilized in that construct provided a sensitized emission, we estimate that this would have equated to an overall end-to-end ET efficiency of ≤0.1%. In this report, we demonstrate that overall energy flow through a second generation hybrid architecture can be significantly improved by reengineering four key aspects of the composite structure: (1) making the initial DNA modification chemistry smaller and more facile to implement, (2) optimizing donor–acceptor dye pairings, (3) varying donor–acceptor dye spacing as a function of the Förster distance <i>R</i><sub>0</sub>, and (4) increasing the number of DNA wires displayed around each central QD donor. These cumulative changes lead to a <i>2 orders of magnitude</i> improvement in the exciton transfer efficiency to the final terminal dye in comparison to the first-generation construct. The overall end-to-end efficiency through the optimized, five-fluorophore/four-step cascaded energy transfer system now approaches 10%. The results are analyzed using Förster theory with various sources of randomness accounted for by averaging over ensembles of modeled constructs. Fits to the spectra suggest near-ideal behavior when the photonic wires have two sequential acceptor dyes (Cy3 and Cy3.5) and exciton transfer efficiencies approaching 100% are seen when the dye spacings are 0.5 × <i>R</i><sub>0</sub>. However, as additional dyes are included in each wire, strong nonidealities appear that are suspected to arise predominantly from the poor photophysical performance of the last two acceptor dyes (Cy5 and Cy5.5). The results are discussed in the context of improving exciton transfer efficiency along photonic wires and the contributions these architectures can make to understanding multistep FRET processes

    Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Förster Resonance Energy Transfer Relays: Characterization and Biosensing

    No full text
    The unique photophysical properties of semiconductor quantum dot (QD) bioconjugates offer many advantages for active sensing, imaging, and optical diagnostics. In particular, QDs have been widely adopted as either donors or acceptors in Förster resonance energy transfer (FRET)-based assays and biosensors. Here, we expand their utility by demonstrating that QDs can function in a simultaneous role as acceptors and donors within time-gated FRET relays. To achieve this configuration, the QD was used as a central nanoplatform and coassembled with peptides or oligonucleotides that were labeled with either a long lifetime luminescent terbium­(III) complex (Tb) or a fluorescent dye, Alexa Fluor 647 (A647). Within the FRET relay, the QD served as a critical intermediary where (1) an excited-state Tb donor transferred energy to the ground-state QD following a suitable microsecond delay and (2) the QD subsequently transferred that energy to an A647 acceptor. A detailed photophysical analysis was undertaken for each step of the FRET relay. The assembly of increasing ratios of Tb/QD was found to linearly increase the magnitude of the FRET-sensitized time-gated QD photoluminescence intensity. Importantly, the Tb was found to sensitize the subsequent QD–A647 donor–acceptor FRET pair without significantly affecting the intrinsic energy transfer efficiency within the second step in the relay. The utility of incorporating QDs into this type of time-gated energy transfer configuration was demonstrated in prototypical bioassays for monitoring protease activity and nucleic acid hybridization; the latter included a dual target format where each orthogonal FRET step transduced a separate binding event. Potential benefits of this time-gated FRET approach include: eliminating background fluorescence, accessing two approximately independent FRET mechanisms in a single QD-bioconjugate, and multiplexed biosensing based on spectrotemporal resolution of QD-FRET without requiring multiple colors of QD

    Intracellularly Actuated Quantum Dot–Peptide–Doxorubicin Nanobioconjugates for Controlled Drug Delivery via the Endocytic Pathway

    No full text
    Nanoparticle (NP)-mediated drug delivery (NMDD) has emerged as a novel method to overcome the limitations of traditional systemic delivery of therapeutics, including the controlled release of the NP-associated drug cargo. Currently, our most advanced understanding of how to control NP-associated cargos is in the context of soft nanoparticles (e.g., liposomes), but less is known about controlling the release of cargos from the surface of hard NPs (e.g., gold NPs). Here we employ a semiconductor quantum dot (QD) as a prototypical hard NP platform and use intracellularly triggered actuation to achieve spatiotemporal control of drug release and modulation of drug efficacy. Conjugated to the QD are two peptides: (1) a cell-penetrating peptide (CPP) that facilitates uptake of the conjugate into the endocytic pathway and (2) a display peptide conjugated to doxorubicin (DOX) via three different linkages (ester, disulfide, and hydrazone) that are responsive to enzymatic cleavage, reducing conditions, and low pH, respectively. Formation of the QD–[peptide–DOX]–CPP complex is driven by self-assembly that allows control over both the ratio of each peptide species conjugated to the QD and the eventual drug dose delivered to cells. Förster resonance energy transfer assays confirmed successful assembly of the QD–peptide complexes and functionality of the linkages. Confocal microscopy was employed to visualize residence of the QD–[peptide–DOX]–CPP complexes in the endocytic pathway, and distinct differences in DOX localization were noted for the ester linkage, which showed clear signs of nuclear delivery versus the hydrazone, disulfide, and amide control. Finally, delivery of the QD–[peptide–DOX]–CPP conjugate resulted in cytotoxicity for the ester linkage that was comparable to free DOX. Attachment of DOX via the hydrazone linkage facilitated intermediary toxicity, while the disulfide and amide control linkages showed minimal toxicity. Our data demonstrate the utility of hard NP–peptide bioconjugates to function as multifunctional scaffolds for simultaneous control over cellular drug uptake and toxicity and the vital role played by the nature of the chemical linkage that appends the drug to the NP carrier

    Complex Förster Energy Transfer Interactions between Semiconductor Quantum Dots and a Redox-Active Osmium Assembly

    No full text
    The ability of luminescent semiconductor quantum dots (QDs) to engage in diverse energy transfer processes with organic dyes, light-harvesting proteins, metal complexes, and redox-active labels continues to stimulate interest in developing them for biosensing and light-harvesting applications. Within biosensing configurations, changes in the rate of energy transfer between the QD and the proximal donor, or acceptor, based upon some external (biological) event form the principle basis for signal transduction. However, designing QD sensors to function optimally is predicated on a full understanding of all relevant energy transfer mechanisms. In this report, we examine energy transfer between a range of CdSe–ZnS core–shell QDs and a redox-active osmium(II) polypyridyl complex. To facilitate this, the Os complex was synthesized as a reactive isothiocyanate and used to label a hexahistidine-terminated peptide. The Os-labeled peptide was ratiometrically self-assembled to the QDs <i>via</i> metal affinity coordination, bringing the Os complex into close proximity of the nanocrystal surface. QDs displaying different emission maxima were assembled with increasing ratios of Os–peptide complex and subjected to detailed steady-state, ultrafast transient absorption, and luminescence lifetime decay analyses. Although the possibility exists for charge transfer quenching interactions, we find that the QD donors engage in relatively efficient Förster resonance energy transfer with the Os complex acceptor despite relatively low overall spectral overlap. These results are in contrast to other similar QD donor–redox-active acceptor systems with similar separation distances, but displaying far higher spectral overlap, where charge transfer processes were reported to be the dominant QD quenching mechanism

    Optimizing Protein Coordination to Quantum Dots with Designer Peptidyl Linkers

    No full text
    Semiconductor quantum dots (QDs) demonstrate select optical properties that make them of particular use in biological imaging and biosensing. Controlled attachment of biomolecules such as proteins to the QD surface is thus critically necessary for development of these functional nanobiomaterials. QD surface coatings such as poly­(ethylene glycol) impart colloidal stability to the QDs, making them usable in physiological environments, but can impede attachment of proteins due to steric interactions. While this problem is being partially addressed through the development of more compact QD ligands, here we present an alternative and complementary approach to this issue by engineering rigid peptidyl linkers that can be appended onto almost all expressed proteins. The linkers are specifically designed to extend a terminal polyhistidine sequence out from the globular protein structure and penetrate the QD ligand coating to enhance binding by metal-affinity driven coordination. α-Helical linkers of two lengths terminating in either a single or triple hexahistidine motif were fused onto a single-domain antibody; these were then self-assembled onto QDs to create a model immunosensor system targeted against the biothreat agent ricin. We utilized this system to systematically evaluate the peptidyl linker design in functional assays using QDs stabilized with four different types of coating ligands including poly­(ethylene glycol). We show that increased linker length, but surprisingly not added histidines, can improve protein to QD attachment and sensor performance despite the surface ligand size with both custom and commercial QD preparations. Implications for these findings on the development of QD-based biosensors are discussed

    Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes

    No full text
    Charge transfer processes with semiconductor quantum dots (QDs) have generated much interest for potential utility in energy conversion. Such configurations are generally nonbiological; however, recent studies have shown that a redox-active ruthenium­(II)–phenanthroline complex (Ru<sup>2+</sup>-phen) is particularly efficient at quenching the photoluminescence (PL) of QDs, and this mechanism demonstrates good potential for application as a generalized biosensing detection modality since it is aqueous compatible. Multiple possibilities for charge transfer and/or energy transfer mechanisms exist within this type of assembly, and there is currently a limited understanding of the underlying photophysical processes in such biocomposite systems where nanomaterials are directly interfaced with biomolecules such as proteins. Here, we utilize redox reactions, steady-state absorption, PL spectroscopy, time-resolved PL spectroscopy, and femtosecond transient absorption spectroscopy (FSTA) to investigate PL quenching in biological assemblies of CdSe/ZnS QDs formed with peptide-linked Ru<sup>2+</sup>-phen. The results reveal that QD quenching requires the Ru<sup>2+</sup> oxidation state and is not consistent with Förster resonance energy transfer, strongly supporting a charge transfer mechanism. Further, two colors of CdSe/ZnS core/shell QDs with similar macroscopic optical properties were found to have very different rates of charge transfer quenching, by Ru<sup>2+</sup>-phen with the key difference between them appearing to be the thickness of their ZnS outer shell. The effect of shell thickness was found to be larger than the effect of increasing distance between the QD and Ru<sup>2+</sup>-phen when using peptides of increasing persistence length. FSTA and time-resolved upconversion PL results further show that exciton quenching is a rather slow process consistent with other QD conjugate materials that undergo hole transfer. An improved understanding of the QD–Ru<sup>2+</sup>-phen system can allow for the design of more sophisticated charge-transfer-based biosensors using QD platforms

    Competition between Förster Resonance Energy Transfer and Electron Transfer in Stoichiometrically Assembled Semiconductor Quantum Dot–Fullerene Conjugates

    No full text
    Understanding how semiconductor quantum dots (QDs) engage in photoinduced energy transfer with carbon allotropes is necessary for enhanced performance in solar cells and other optoelectronic devices along with the potential to create new types of (bio)sensors. Here, we systematically investigate energy transfer interactions between C<sub>60</sub> fullerenes and four different QDs, composed of CdSe/ZnS (type I) and CdSe/CdS/ZnS (quasi type II), with emission maxima ranging from 530 to 630 nm. C<sub>60</sub>-pyrrolidine tris-acid was first coupled to the N-terminus of a hexahistidine-terminated peptide <i>via</i> carbodiimide chemistry to yield a C<sub>60</sub>-labeled peptide (pepC<sub>60</sub>). This peptide provided the critical means to achieve ratiometric self-assembly of the QD-(pepC<sub>60</sub>) nanoheterostructures by exploiting metal affinity coordination to the QD surface. Controlled QD-(pepC<sub>60</sub>)<sub><i>N</i></sub> bioconjugates were prepared by discretely increasing the ratio (<i>N</i>) of pepC<sub>60</sub> assembled per QD in mixtures of dimethyl sulfoxide and buffer; this mixed organic/aqueous approach helped alleviate issues of C<sub>60</sub> solubility. An extensive set of control experiments were initially performed to verify the specific and ratiometric nature of QD-(pepC<sub>60</sub>)<sub><i>N</i></sub> assembly. Photoinitiated energy transfer in these hybrid organic–inorganic systems was then interrogated using steady-state and time-resolved fluorescence along with ultrafast transient absorption spectroscopy. Coordination of pepC<sub>60</sub> to the QD results in QD PL quenching that directly tracks with the number of peptides displayed around the QD. A detailed photophysical analysis suggests a competition between electron transfer and Förster resonance energy transfer from the QD to the C<sub>60</sub> that is dependent upon a complex interplay of pepC<sub>60</sub> ratio per QD, the presence of underlying spectral overlap, and contributions from QD size. These results highlight several important factors that must be considered when designing QD-donor/C<sub>60</sub>-acceptor systems for potential optoelectronic and biosensing applications
    corecore