2 research outputs found

    Age-dependent divergent effects of OX40L treatment on the development of diabetes in NOD mice

    No full text
    <p>Earlier, we have shown that GM-CSF derived bone marrow (BM) dendritic cells (G-BMDCs) can expand Foxp3<sup>+</sup> regulatory T-cells (Tregs) through a TCR-independent, but IL-2 dependent mechanism that required OX40L/OX40 interaction. While some reports have shown suppression of autoimmunity upon treatment with an OX40 agonist, others have shown exacerbation of autoimmune disease instead. To better understand the basis for these differing outcomes, we compared the effects of OX40L treatment in 6-week-old pre-diabetic and 12-week-old near diabetic NOD mice. Upon treatment with OX40L, 6-week-old NOD mice remained normoglycemic and showed a significant increase in Tregs in their spleen and lymph nodes, while 12-week-old NOD mice very rapidly developed hyperglycemia and failed to show Treg increase in spleen or LN. Interestingly, OX40L treatment increased Tregs in the thymus of both age groups. However, it induced Foxp3<sup>+</sup>CD103<sup>+</sup>CD38<sup>−</sup> stable-phenotype Tregs in the thymus and reduced the frequency of autoreactive Teff cells in 6-week-old mice; while it induced Foxp3<sup>+</sup>CD103<sup>−</sup>CD38<sup>+</sup> labile-phenotype Tregs in the thymus and increased autoreactive CD4<sup>+</sup> T cells in the periphery of 12-week-old mice. This increase in autoreactive CD4<sup>+</sup> T cells was likely due to either a poor suppressive function or conversion of labile Tregs into Teff cells. Using <i>ex vivo</i> cultures, we found that the reduction in Treg numbers in 12-week-old mice was likely due to IL-2 deficit, and their numbers could be increased upon addition of exogenous IL-2. The observed divergent effects of OX40L treatment were likely due to differences in the ability of 6- and 12-week-old NOD mice to produce IL-2.</p

    A Hybrid Protein–Polymer Nanoworm Potentiates Apoptosis Better than a Monoclonal Antibody

    No full text
    B-cell lymphomas continue to occur with a high incidence. The chimeric antibody known as Rituximab (Rituxan) has become a vital therapy for these patients. Rituximab induces cell death <i>via</i> binding and clustering of the CD20 receptor by Fcγ expressing effector cells. Because of the limited mobility of effector cells, it may be advantageous to cluster CD20 directly using multivalent nanostructures. To explore this strategy, this manuscript introduces a nanoparticle that assembles from a fusion between a single chain antibody and a soluble protein polymer. These hybrid proteins express in <i>Escherichia coli</i> and do not require bioconjugation between the antibody and a substrate. Surprisingly a fusion between an anti-CD20 single chain antibody and a soluble protein polymer assemble worm-like nanostructures, which were characterized using light scattering and cryogenic transmission electron microscopy. These nanoworms competitively bind CD20 on two B-cell lymphoma cell lines, exhibit concentration-dependent induction of apoptosis, and induce apoptosis better than Rituximab alone. Similar activity was observed <i>in vivo</i> using a non-Hodgkin lymphoma xenograft model. In comparison to Rituximab, systemic nanoworms significantly slowed tumor growth. These findings suggest that hybrid nanoworms targeted at CD20 may be useful treatments for B-cell related malignancies. Because of the ubiquity of antibody therapeutics, related nanoworms may have uses against other molecular targets
    corecore