4 research outputs found

    Discovery of 1‑(1<i>H</i>‑Pyrazolo[4,3‑<i>c</i>]pyridin-6-yl)urea Inhibitors of Extracellular Signal-Regulated Kinase (ERK) for the Treatment of Cancers

    No full text
    The ERK/MAPK pathway plays a central role in the regulation of critical cellular processes and is activated in more than 30% of human cancers. Specific BRAF and MEK inhibitors have shown clinical efficacy in patients for the treatment of BRAF-mutant melanoma. However, the majority of responses are transient, and resistance is often associated with pathway reactivation of the ERK signal pathway. Acquired resistance to these agents has led to greater interest in ERK, a downstream target of the MAPK pathway. De novo design efforts of a novel scaffold derived from SCH772984 by employing hydrogen bond interactions specific for ERK in the binding pocket identified 1-(1<i>H</i>-pyrazolo­[4,3-<i>c</i>]­pyridin-6-yl)­ureas as a viable lead series. Sequential SAR studies led to the identification of highly potent and selective ERK inhibitors with low molecular weight and high LE. Compound <b>21</b> exhibited potent target engagement and strong tumor regression in the BRAF<sup>V600E</sup> xenograft model

    Discovery of 1‑(1<i>H</i>‑Pyrazolo[4,3‑<i>c</i>]pyridin-6-yl)urea Inhibitors of Extracellular Signal-Regulated Kinase (ERK) for the Treatment of Cancers

    No full text
    The ERK/MAPK pathway plays a central role in the regulation of critical cellular processes and is activated in more than 30% of human cancers. Specific BRAF and MEK inhibitors have shown clinical efficacy in patients for the treatment of BRAF-mutant melanoma. However, the majority of responses are transient, and resistance is often associated with pathway reactivation of the ERK signal pathway. Acquired resistance to these agents has led to greater interest in ERK, a downstream target of the MAPK pathway. De novo design efforts of a novel scaffold derived from SCH772984 by employing hydrogen bond interactions specific for ERK in the binding pocket identified 1-(1<i>H</i>-pyrazolo­[4,3-<i>c</i>]­pyridin-6-yl)­ureas as a viable lead series. Sequential SAR studies led to the identification of highly potent and selective ERK inhibitors with low molecular weight and high LE. Compound <b>21</b> exhibited potent target engagement and strong tumor regression in the BRAF<sup>V600E</sup> xenograft model

    Discovery of Selective RNA-Binding Small Molecules by Affinity-Selection Mass Spectrometry

    No full text
    Recent advances in understanding the relevance of noncoding RNA (ncRNA) to disease have increased interest in drugging ncRNA with small molecules. The recent discovery of ribocil, a structurally distinct synthetic mimic of the natural ligand of the flavin mononucleotide (FMN) riboswitch, has revealed the potential chemical diversity of small molecules that target ncRNA. Affinity-selection mass spectrometry (AS-MS) is theoretically applicable to high-throughput screening (HTS) of small molecules binding to ncRNA. Here, we report the first application of the Automated Ligand Detection System (ALIS), an indirect AS-MS technique, for the selective detection of small molecule–ncRNA interactions, high-throughput screening against large unbiased small-molecule libraries, and identification and characterization of novel compounds (structurally distinct from both FMN and ribocil) that target the FMN riboswitch. Crystal structures reveal that different compounds induce various conformations of the FMN riboswitch, leading to different activity profiles. Our findings validate the ALIS platform for HTS screening for RNA-binding small molecules and further demonstrate that ncRNA can be broadly targeted by chemically diverse yet selective small molecules as therapeutics

    Discovery of a 3‑(4-Pyrimidinyl) Indazole (MLi-2), an Orally Available and Selective Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitor that Reduces Brain Kinase Activity

    No full text
    Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein which contains a kinase domain and GTPase domain among other regions. Individuals possessing gain of function mutations in the kinase domain such as the most prevalent G2019S mutation have been associated with an increased risk for the development of Parkinson’s disease (PD). Given this genetic validation for inhibition of LRRK2 kinase activity as a potential means of affecting disease progression, our team set out to develop LRRK2 inhibitors to test this hypothesis. A high throughput screen of our compound collection afforded a number of promising indazole leads which were truncated in order to identify a minimum pharmacophore. Further optimization of these indazoles led to the development of MLi-2 (<b>1</b>): a potent, highly selective, orally available, brain-penetrant inhibitor of LRRK2
    corecore