8 research outputs found
Adaptations in Muscular Strength for Individuals With Multiple Sclerosis Following Robotic Rehabilitation: A Scoping Review
Muscular weakness and loss of motor function are common symptoms of multiple sclerosis. Robotic rehabilitation can improve sensorimotor function and motor control in this population. However, many studies using robotics for rehabilitation have overlooked changes in muscular strength, despite research demonstrating its utility in combating functional impairments. The purpose of this scoping review was to critically examine changes in muscular strength following robotic rehabilitation interventions for individuals with multiple sclerosis. A literature search of five databases was conducted and search terms included a combination of three primary terms: robotic rehabilitation/training, muscular strength, and multiple sclerosis. Thirty one articles were found, and following inclusion criteria, 5 remained for further investigation. Although muscular strength was not the primary targeted outcome of the training for any of the included articles, increases in muscular strength were present in most of the studies suggesting that robotic therapy with a resistive load can be an effective alternative to resistance training for increasing muscular strength. Outcome measures of isometric knee-extensor force (kg) (right: p < 0.05, left: p < 0.05), isometric knee flexion and extension torque (Nm) (p < 0.05), ankle dorsiflexion and plantarflexion torque (Nm) (all p < 0.05) and handgrip force (kg) (p < 0.05) all improved following a robotic training intervention. These adaptations occurred with sustained low resistive loads of hand grip or during gait training. This scoping review concludes that, despite a lack of studies focusing on strength, there is evidence robotics is a useful modality to improve muscular strength in combination with motor control and neuromotor improvements. A call for more studies to document changes in strength during robotic rehabilitation protocols is warranted
Examining Muscle Activity Differences During Single and Dual Vector Elastic Resistance Exercises
# Background
Elastic resistance exercise is a common part of rehabilitation programs. While these exercises are highly prevalent, little information exists on how adding an additional resistance vector with a different direction from the primary vector alters muscle activity of the upper extremity.
# Purpose
The purpose of this study was to examine the effects of dual vector exercises on torso and upper extremity muscle activity in comparison to traditional single vector techniques.
# Study Design
Repeated measures design.
# Methods
Sixteen healthy university-aged males completed four common shoulder exercises against elastic resistance (abduction, flexion, internal rotation, external rotation) while using a single or dual elastic vector at a fixed cadence and standardized elastic elongation. Surface electromyography was collected from 16 muscles of the right upper extremity. Mean, peak and integrated activity were extracted from linear enveloped and normalized data and a 2-way repeated measures ANOVA examined differences between conditions.
# Results
All independent variables differentially influenced activation. Interactions between single/dual vectors and exercise type affected mean activation in 11/16 muscles, while interactions in peak activation existed in 7/16 muscles. Adding a secondary vector increased activation predominantly in flexion or abduction exercises; little changes existed when adding a second vector in internal and external rotation exercises. The dual vector exercise in abduction significantly increased mean activation in lower trapezius by 25.6 ± 8.11 %MVC and peak activation in supraspinatus by 29.4 ± 5.94 %MVC (p<0.01). Interactions between single/dual vectors and exercise type affected integrated electromyography for most muscles; the majority of these muscles had the highest integrated electromyography in the dual vector abduction condition.
# Conclusion
Muscle activity often increased with a second resistance vector added; however, the magnitude was exercise-dependent. The majority of these changes existed in the flexion and abduction exercises, with little differences in the internal or external rotation exercises.
# Level of Evidence
3
The Efficacy of Upper-Extremity Elastic Resistance Training on Shoulder Strength and Performance: A Systematic Review
Elastic resistance exercise is a popular mode of strength training that has demonstrated positive effects on whole-body strength and performance. The purpose of this work was to identify the efficacy of elastic resistance training on improving upper limb strength and performance measures for the shoulder. Seven online databases were searched with a focus on longitudinal studies assessing shoulder elastic training strength interventions. In total, 1367 studies were initially screened for relevancy; 24 full-text articles were included for review. Exercise interventions ranged from 4–12 weeks, assessing pre-/post-strength and performance measures inclusive of isometric and isokinetic strength, 1RM strength, force-velocity tests, and throwing-velocity tests. Significant increases in various isometric strength measures (IR:11–13%, ER:11–42%, FL: 14–36%, EXT: 4–17%, ABD: 8–16%), 1RM strength (~24% in bench press), force-velocities, throwing- and serve-velocities (12%) were all observed. Elastic resistance training elicited positive effects for both strength and performance parameters regardless of intervention duration. Similar significant increases were observed in isometric strength and 1RM strength across durations. Isokinetic strength increases were variable and dependent on the joint velocity conditions. Quantifying the dosage of appropriate exercise prescription for optimal strength and performance gains is inconclusive with this study due to the heterogeneity of the intervention protocols
Sex differences in strength at the shoulder: a systematic review
Background Understanding differential strength capability between sexes is critical in ergonomics and task design. Variations in study designs and outcome measures generates challenges in establishing workplace guidelines for strength requirements to minimize upper extremity risk for workers. The purpose of this systematic review was to collate and summarize sex differences in strength at the shoulder across movement directions and contraction types. Methods A total of 3,294 articles were screened from four databases (Embase, Medline, SCOPUS, and Web of Science). Eligibility criteria included observational studies, direct measurement of muscular joint, and healthy adult participants (18–65 years old). Strength outcome measures were normalized to percentages of male outputs to allow comparisons across articles. Results A total of 63 studies were included within the final review. Majority of articles observed increased strength in males; the gap between male–female strength was greater in flexion and internal/external rotation, with females generating ~30% of male strength; scaption strength ratios were most consistent of the movement groups, with females generating 55–62% of male strength. Conclusion Sex strength differences should be considered as an important factor for workplace task design as women are more at risk for occupational-related injuries than men in equivalent strength requirements. Differences in strength were not synonymous across motions; females demonstrated increased disparity relative to male strength in horizontal flexion/extension, forward flexion and internal/external rotation. Some movements had an extremely limited pool of available studies for examination which identified critical research gaps within the literature. Collating and quantifying strength differences is critical for effective workstation design with a range of users to mitigate potential overexertion risk and musculoskeletal injury