85 research outputs found

    Spontaneous coronary artery dissection complicated by left ventricular free wall rupture in Turner syndrome

    Get PDF
    A 38-year-old with Turner syndrome presented with acute myocardial infarction due to multivessel spontaneous coronary artery dissection (SCAD) complicated by left ventricular free wall rupture. Conservative management for SCAD was pursued. She underwent sutureless repair for an oozing-type left ventricular free wall rupture. SCAD has not been previously reported in Turner syndrome.

    Comparative risks of initial aortic events associated with genetic thoracic aortic disease

    Get PDF
    BACKGROUND: Pathogenic variants in 11 genes predispose individuals to heritable thoracic aortic disease (HTAD), but limited data are available to stratify the risk for aortic events associated with these genes. OBJECTIVES: This study sought to compare the risk of first aortic event, specifically thoracic aortic aneurysm surgery or an aortic dissection, among 7 HTAD genes and variant types within each gene. METHODS: A retrospective cohort of probands and relatives with rare variants in 7 genes for HTAD (n = 1,028) was assessed for the risk of first aortic events based on the gene altered, pathogenic variant type, sex, proband status, and location of recruitment. RESULTS: Significant differences in aortic event risk were identified among the smooth muscle contraction genes (ACTA2, MYLK, and PRKG1; P = 0.002) and among the genes for Loeys-Dietz syndrome, which encode proteins in the transforming growth factor (TGF)-β pathway (SMAD3, TGFB2, TGFBR1, and TGFBR2;P \u3c 0.0001). Cumulative incidence of type A aortic dissection was higher than elective aneurysm surgery in patients with variants in ACTA2, MYLK, PRKG1, and SMAD3; in contrast, patients with TGFBR2 variants had lower cumulative incidence of type A aortic dissection than elective aneurysm surgery. Cumulative incidence of type B aortic dissection was higher for ACTA2, PRKG1, and TGFBR2 than other genes. After adjusting for proband status, sex, and recruitment location, specific variants in ACTA2 and TGFBR2 were associated with substantially higher risk of aortic event with childhood onset. CONCLUSIONS: Gene- and variant-specific data on aortic events in individuals with HTAD support personalized aortic surveillance and clinical management

    Letter by Harris et al regarding article, outcomes of patients with acute type a aortic intramural hematoma

    Get PDF
    Comment on Outcomes of patients with acute type a aortic intramural hematoma

    Comparative Risks of Initial Aortic Events Associated With Genetic Thoracic Aortic Disease

    Get PDF
    Pathogenic variant; Precision medicine; Thoracic aortic aneurysmVariante patógena; Medicina de precisión; Aneurisma de la aorta torácicaVariant patògena; Medicina de precisió; Aneurisma de l'aorta toràcicaBackground Pathogenic variants in 11 genes predispose individuals to heritable thoracic aortic disease (HTAD), but limited data are available to stratify the risk for aortic events associated with these genes. Objectives This study sought to compare the risk of first aortic event, specifically thoracic aortic aneurysm surgery or an aortic dissection, among 7 HTAD genes and variant types within each gene. Methods A retrospective cohort of probands and relatives with rare variants in 7 genes for HTAD (n = 1,028) was assessed for the risk of first aortic events based on the gene altered, pathogenic variant type, sex, proband status, and location of recruitment. Results Significant differences in aortic event risk were identified among the smooth muscle contraction genes (ACTA2, MYLK, and PRKG1; P = 0.002) and among the genes for Loeys-Dietz syndrome, which encode proteins in the transforming growth factor (TGF)-β pathway (SMAD3, TGFB2, TGFBR1, and TGFBR2; P < 0.0001). Cumulative incidence of type A aortic dissection was higher than elective aneurysm surgery in patients with variants in ACTA2, MYLK, PRKG1, and SMAD3; in contrast, patients with TGFBR2 variants had lower cumulative incidence of type A aortic dissection than elective aneurysm surgery. Cumulative incidence of type B aortic dissection was higher for ACTA2, PRKG1, and TGFBR2 than other genes. After adjusting for proband status, sex, and recruitment location, specific variants in ACTA2 and TGFBR2 were associated with substantially higher risk of aortic event with childhood onset. Conclusions Gene- and variant-specific data on aortic events in individuals with HTAD support personalized aortic surveillance and clinical management.These studies were funded by the National Institutes of Health (NIH) (NIH R01HL109942 to Dr Milewicz DMM and K23HL127266 to Dr Morris), Genetic Aortic Disorders Association Canada, Temerty Family Foundation, and the John Ritter Foundation. Dr LeMaire serves as a consultant for Terumo Aortic and Cerus; and serves as a principal investigator for clinical studies sponsored by Terumo Aortic and CytoSorbents. Dr Morris is on the scientific advisory board for vascular Ehlers Danlos syndrome clinical trial for Aytu Biopharma. Dr Regalado is an employee and shareholder of Invitae. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose

    Impact of aortic valve effective height following valve-sparing root replacement on postoperative insufficiency and reoperation

    Get PDF
    BACKGROUND: This study evaluated the impact of anatomic aortic root parameters during valve-sparing root replacement on the probability of postoperative aortic insufficiency and freedom from aortic valve reoperation. METHODS: From 1995 to 2020, 177 patients underwent valve-sparing root replacement (163 reimplantations, 14 remodeling). Preoperative and postoperative echocardiograms were analyzed to measure annulus and sinus diameters, effective height of leaflet coaptation, and degree of aortic insufficiency. Logistic regression was used to evaluate predictors of 2+ or greater late postoperative aortic insufficiency. Fine-Gray regression determined predictors for aortic valve reintervention. RESULTS: The study population included 122 (69%) men with a mean age of 43 ± 15 years. A total of 119 patients (67%) had an identified connective tissue disorder. The cumulative incidence of aortic valve reoperation was estimated as 7% at 5 years and 12% at 10 years. The probability of 2+ or greater late postoperative aortic insufficiency was inversely related to effective height during valve-sparing root replacement (P = .018). As postoperative effective height fell below 11 mm, the probability of 2+ or greater aortic insufficiency exceeded 10%. On multivariable logistic regression, effective height (odds ratio, 0.53; 0.33-0.86; P = .010), preoperative annulus diameter (odds ratio, 1.44; 1.13-1.82; P = .003), and degree of preoperative aortic insufficiency (odds ratio, 2.57; 1.45-4.52; P = .001) were associated with increased incidence of 2+ or greater late postoperative aortic insufficiency. On multivariable Fine-Gray regression, risk factors for aortic valve reintervention included preoperative annulus diameter (subdistribution hazard ratio, 1.28 [1.03-1.59], P = .027), history of 3+ or greater aortic insufficiency (subdistribution hazard ratio, 4.28; 1.60-11.44; P = .004), and 2+ or greater early postoperative aortic insufficiency (subdistribution hazard ratio, 5.22; 2.29-11.90; P \u3c .001). CONCLUSIONS: Measures to increase effective height during valve-sparing root replacement may decrease the risk of more than mild postoperative aortic insufficiency after repair and the need for aortic valve reoperation

    Genetic risk for aortic aneurysm in adolescent idiopathic scoliosis

    Get PDF
    BACKGROUND: Scoliosis is a feature of several genetic disorders that are also associated with aortic aneurysm, including Marfan syndrome, Loeys-Dietz syndrome, and type-IV Ehlers-Danlos syndrome. Life-threatening complications of aortic aneurysm can be decreased through early diagnosis. Genetic screening for mutations in populations at risk, such as patients with adolescent idiopathic scoliosis, may improve recognition of these disorders. METHODS: The coding regions of five clinically actionable genes associated with scoliosis (COL3A1, FBN1, TGFBR1, TGFBR2, and SMAD3) and aortic aneurysm were sequenced in 343 adolescent idiopathic scoliosis cases. Gene variants that had minor allele frequencies of <0.0001 or were present in human disease mutation databases were identified. Variants were classified as pathogenic, likely pathogenic, or variants of unknown significance. RESULTS: Pathogenic or likely pathogenic mutations were identified in 0.9% (three) of 343 adolescent idiopathic scoliosis cases. Two patients had pathogenic SMAD3 nonsense mutations consistent with type-III Loeys-Dietz syndrome and one patient had a pathogenic FBN1 mutation with subsequent confirmation of Marfan syndrome. Variants of unknown significance in COL3A1 and FBN1 were identified in 5.0% (seventeen) of 343 adolescent idiopathic scoliosis cases. Six FBN1 variants were previously reported in patients with Marfan syndrome, yet were considered variants of unknown significance based on the level of evidence. Variants of unknown significance occurred most frequently in FBN1 and were associated with greater curve severity, systemic features of Marfan syndrome, and joint hypermobility. CONCLUSIONS: Clinically actionable pathogenic mutations in genes associated with adolescent idiopathic scoliosis and aortic aneurysm are rare in patients with adolescent idiopathic scoliosis who are not suspected of having these disorders, although variants of unknown significance are relatively common. CLINICAL RELEVANCE: Routine genetic screening of all patients with adolescent idiopathic scoliosis for mutations in clinically actionable aortic aneurysm disease genes is not recommended on the basis of the high frequency of variants of unknown significance. Clinical evaluation and family history should heighten indications for genetic referral and testing

    Autosomal dominant inheritance of a predisposition to thoracic aortic aneurysms and dissections and intracranial saccular aneurysms

    Full text link
    A genetic predisposition for thoracic aortic aneurysms and dissections (TAAD) can be inherited in an autosomal dominant manner with decreased penetrance and variable expression. Four genes identified to date for familial TAAD account for approximately 20% of the heritable predisposition. In a cohort of 514 families with two or more members with presumed autosomal dominant TAAD, 48 (9.3%) families have one or more members who were at 50% risk to inherit the presumptive gene causing TAAD had an intracranial vascular event. In these families, gender is significantly associated with disease presentation ( P  < 0.001), with intracranial events being more common in women (65.4%) while TAAD events occurred more in men (64.2%,). Twenty‐nine of these families had intracranial aneurysms (ICA) that could not be designated as saccular or fusiform due to incomplete data. TGFBR1 , TGFBR2 , and ACTA2 mutations were found in 4 families with TAAD and predominantly fusiform ICAs. In 15 families, of which 14 tested negative for 3 known TAAD genes, 17 family members who were at risk for inheriting TAAD had saccular ICAs. In 2 families, women who harbored the genetic mutation causing TAAD had ICAs. In 2 additional families, intracranial, thoracic and abdominal aortic aneurysms were observed. This study documents the autosomal dominant inheritance of TAADs with saccular ICAs, a previously recognized association that has not been adequately characterized as heritable. In these families, routine cerebral and aortic imaging for at risk members could prevent cerebral hemorrhages and aortic dissections. © 2011 Wiley‐Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87019/1/34050_ftp.pd

    Heimler Syndrome is Caused by Hypomorphic Mutations in the Peroxisome-Biogenesis Genes PEX1 and PEX6

    Get PDF
    Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities and occasional or late onset retinal pigmentation. We ascertained eight families with HS, and - using a whole exome sequencing approach - identified biallelic mutations in PEX1 or PEX6 in six of them. Loss of function mutations in both genes are known causes of a spectrum of autosomal recessive peroxisome biogenesis disorders (PBDs), including Zellweger syndrome. PBDs are characterized by leukodystrophy, hypotonia, SNHL, retinopathy, and skeletal, craniofacial, and liver abnormalities. We demonstrate that each HS family has at least one hypomorphic allele that results in extremely mild peroxisomal dysfunction. Although individuals with HS share some subtle clinical features found in PBDs, the overlap is minimal and the diagnosis was not suggested by routine blood and skin fibroblast analyses used to detect PBDs. In conclusion, our findings define Heimler syndrome as a mild PBD, expanding the pleiotropy of mutations in PEX1 and PEX6
    corecore