2 research outputs found
Multi-attribute decision-making for intrusion detection systems: a systematic review
Intrusion detection systems (IDSs) employ sophisticated security techniques to detect malicious activities on hosts and/or networks. IDSs have been utilized to ensure the security of computer and network systems. However, numerous evaluation and selection issues related to several cybersecurity aspects of IDSs were solved using a decision support approach. The approach most often utilized for decision support in this regard is multi-attribute decision-making (MADM). MADM can aid in selecting the most optimal solution from a huge pool of available alternatives when the appropriate evaluation attributes are provided. The openness of the MADM methods in solving numerous cybersecurity issues makes it largely efficient for IDS applications. We must first understand the available solutions and gaps in this area of research to provide an insightful analysis of the combination of MADM techniques with IDS and support researchers. Therefore, this study conducts a systematic review to organize the research landscape into a consistent taxonomy. A total of 28 articles were considered for this taxonomy and were classified into three main categories: data analysis and detection (n=4), response selection (n=7)) and IDS evaluation (n=17)). Each category was thoroughly analyzed in terms of a variety of aspects, including the issues and challenges confronted, as well as the contributions of each study. Furthermore, the datasets, evaluation attributes, MADM methods, evaluation and validation and bibliography analysis used by the selected articles are discussed. In this study, we highlighted the existing perspective and opportunities for MADM in the IDS literature through a systematic review, providing researchers with a valuable reference
IoT-based water monitoring systems: a systematic review
Water quality monitoring plays a significant part in the transition towards intelligent and
smart agriculture and provides an easy transition to automated monitoring of crucial components of human daily needs as new technologies are continuously developed and adopted in agricultural and human daily life (water). For the monitoring and management of water quality, this effort, however, requires reliable models with accurate and thorough datasets. Analyzing water quality monitoring models by utilizing sensors that gather water properties during live experiments is possible due to the necessity for precision in modeling. To convey numerous conclusions regarding the concerns, issues, difficulties, and research gaps that have existed throughout the past five years (2018โ2022), this review article thoroughly examines the water quality literature. To find trustworthy peer-reviewed publications, several digital databases were searched and examined, including IEEE Xploreยฎ, ScienceDirect, Scopus, and Web of Science. Only 50 articles out of the 946 papers obtained, were used in the study of the water quality monitoring research area. There are more rules for article inclusion in the second stage of the filtration process. Utilizing a real-time data acquisition system, the criteria for inclusion for the second phase of filtration looked at the implementation of water quality monitoring and characterization procedures. Reviews and experimental studies comprised most of the articles, which were divided into three categories. To organize the literature into articles with similar types of experimental conditions, a taxonomy of the three literature was created. Topics for recommendations are also provided to facilitate and speed up the pace of advancement in this field of study. By conducting a thorough analysis of the earlier suggested methodologies, research gaps are made clear. The investigation largely pointed out the problems in the accuracy of the models, the development of data-gathering systems, and the types of data used in the proposed frameworks. Finally, by examining critical topics required for the development of this research area, research directions toward smart water quality are presented