16,033 research outputs found

    SET based experiments for HTSC materials: II

    Full text link
    The cuprates seem to exhibit statistics, dimensionality and phase transitions in novel ways. The nature of excitations [i.e. quasiparticle or collective], spin-charge separation, stripes [static and dynamics], inhomogeneities, psuedogap, effect of impurity dopings [e.g. Zn, Ni] and any other phenomenon in these materials must be consistently understood. In this note we further discuss our original suggestion of using Single Electron Tunneling Transistor [SET] based experiments to understand the role of charge dynamics in these systems. Assuming that SET operates as an efficient charge detection system we can expect to understand the underlying physics of charge transport and charge fluctuations in these materials for a range of doping. Experiments such as these can be classed in a general sense as mesoscopic and nano characterization of cuprates and related materials. In principle such experiments can show if electron is fractionalized in cuprates as indicated by ARPES data. In contrast to flux trapping experiments SET based experiments are more direct in providing evidence about spin-charge separation. In addition a detailed picture of nano charge dynamics in cuprates may be obtained.Comment: 10 pages revtex plus four figures; ICMAT 2001 Conference Symposium P: P10-0

    Anomalous random correlations of force constants on the lattice dynamical properties of disordered Au-Fe alloys

    Full text link
    Au-Fe alloys are of immense interest due to their biocompatibility, anomalous hall conductivity, and applications in various medical treatment. However, irrespective of the method of preparation, they often exhibit a high-level of disorder, with properties sensitive to the thermal or magnetic annealing temperatures. We calculate lattice dynamical properties of Au1x_{1-x}Fex_x alloys using density functional theory methods, where, being a multisite property, reliable interatomic force constant (IFC) calculations in disordered alloys remain a challenge. We follow a two fold approach: (1) an accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic the homogeneously disordered alloy; and (2) a configurational averaging for the desired phonon properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the IFC's and phonon dispersion (split bands) near xx=0.19, which is attributed to the local stiffening of the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermo-physical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below xx=0.19, suggesting a tendency for chemical unmixing, reflecting the onset of miscibility gap in the phase diagram. Our results match fairly well with reported data, wherever available

    Dead cone due to parton virtuality

    Full text link
    A general expression for the dead cone of gluons radiated by virtual partons has been derived. The conventional dead cone for massive on-shell quarks and the dead cone for the massless virtual partons have been obtained by using different limits of the general expression. Radiative suppression due to the virtuality of initial parton jets in Heavy-Ion Collisions (HIC) has been discussed. It is observed that the suppression caused by the high virtuality is overwhelmingly large as compared to that on account of conventional dead-cone of heavy quarks. The dead cone due to virtuality may play a crucial role in explaining the observed similar suppression patterns of light and heavy quarks jets in heavy ion collisions at Relativistic Heavy Ion Collider (RHIC)

    In re Harrods Ltd.: The Brussels Convention and the Proper Application of Forum Non Conveniens to Non-Contracting States

    Get PDF
    Although the doctrine of forum non conveniens is unknown in Continental legal systems, Community law does not prevent English courts from preserving their discretion to stay proceedings, in conflicts involving a defendant domiciliary, in favor of more appropriate courts in a non-Contracting State. Where the provisions of the Brussels Convention do not address a legal question, the answer must be sought in the objectives and scheme of the Convention. The English Court of Appeals in Harrods properly understood that Community law does not require ritualistic reliance on the Convention\u27s jurisdiction conferring provisions in cases involving a defendant domiciled in a Contracting State and the jurisdiction of a court in a non-Contracting State

    On entropy, specific heat, susceptibility and Rushbrooke inequality in percolation

    Full text link
    We investigate percolation, a probabilistic model for continuous phase transition (CPT), on square and weighted planar stochastic lattices. In its thermal counterpart, entropy is minimally low where order parameter (OP) is maximally high and vice versa. Besides, specific heat, OP and susceptibility exhibit power-law when approaching the critical point and the corresponding critical exponents α,β,γ\alpha, \beta, \gamma respectably obey the Rushbrooke inequality (RI) α+2β+γ2\alpha+2\beta+\gamma\geq 2. Their analogues in percolation, however, remain elusive. We define entropy, specific heat and redefine susceptibility for percolation and show that they behave exactly in the same way as their thermal counterpart. We also show that RI holds for both the lattices albeit they belong to different universality classes.Comment: 5 pages, 3 captioned figures, to appear as a Rapid Communication in Physical Review E, 201

    Green's function multiple-scattering theory with a truncated basis set: An Augmented-KKR formalism

    Get PDF
    Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an efficient site-centered, electronic-structure technique for addressing an assembly of NN scatterers. Wave-functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number Lmax=(l,m)maxL_{max}=(l,m)_{max}, while scattering matrices, which determine spectral properties, are truncated at Ltr=(l,m)trL_{tr}=(l,m)_{tr} where phase shifts δl>ltr\delta_{l>l_{tr}} are negligible. Historically, LmaxL_{max} is set equal to LtrL_{tr}; however, a more proper procedure retains free-electron and single-site contributions for Lmax>LtrL_{max}>L_{tr} with δl>ltr\delta_{l>l_{tr}} set to zero [Zhang and Butler, Phys. Rev. B {\bf 46}, 7433]. We present a numerically efficient and accurate \emph{augmented}-KKR Green's function formalism that solves the KKR secular equations by matrix inversion [R3\mathcal{R}^3 process with rank N(ltr+1)2N(l_{tr}+1)^2] and includes higher-order LL contributions via linear algebra [R2\mathcal{R}^2 process with rank N(lmax+1)2N(l_{max}+1)^2]. Augmented-KKR yields properly normalized wave-functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. For fcc Cu, bcc Fe and L101_0 CoPt, we present the formalism and numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus LmaxL_{max} for a given LtrL_{tr}.Comment: 7 pages, 5 figure
    corecore