14 research outputs found

    The Role of Sirtuin 3 in Radiation-Induced Long-Term Persistent Liver Injury

    No full text
    In patients with abdominal region cancers, ionizing radiation (IR)-induced long-term liver injury is a major limiting factor in the use of radiotherapy. Previously, the major mitochondrial deacetylase, sirtuin 3 (SIRT3), has been implicated to play an important role in the development of acute liver injury after total body irradiation but no studies to date have examined the role of SIRT3 in liver’s chronic response to radiation. In the current study, ten-month-old Sirt3−/− and Sirt3+/+ male mice received 24 Gy radiation targeted to liver. Six months after exposure, irradiated Sirt3−/− mice livers demonstrated histopathological elevations in inflammatory infiltration, the loss of mature bile ducts and higher DNA damage (TUNEL) as well as protein oxidation (3-nitrotyrosine). In addition, increased expression of inflammatory chemokines (IL-6, IL-1β, TGF-β) and fibrotic factors (Procollagen 1, α-SMA) were also measured in Sirt3−/− mice following 24 Gy IR. The alterations measured in enzymatic activities of catalase, glutathione peroxidase, and glutathione reductase in the livers of irradiated Sirt3−/− mice also implied that hydrogen peroxide and hydroperoxide sensitive signaling cascades in the absence of SIRT3 might contribute to the IR-induced long-term liver injury

    Development and testing of AAV-delivered single-chain variable fragments for the treatment of methamphetamine abuse

    No full text
    <div><p>Methamphetamine (METH) substance abuse disorders have major impact on society, yet no medications have proven successful at preventing METH relapse or cravings. Anti-METH monoclonal antibodies can reduce METH brain concentrations; however, this therapy has limitations, including the need for repeated dosing throughout the course of addiction recovery. An adeno-associated viral (AAV)-delivered DNA sequence for a single-chain variable fragment could offer long-term, continuous expression of anti-METH antibody fragments. For these studies, we injected mice via tail vein with 1 x 10<sup>12</sup> vector genomes of two AAV8 scFv constructs and measured long-term expression of the antibody fragments. Mice expressed each scFv for at least 212 days, achieving micromolar scFv concentrations in serum. In separate experiments 21 days and 50 days after injecting mice with AAV-scFvs mice were challenged with METH <i>in vivo</i>. The circulating scFvs were capable of decreasing brain METH concentrations by up to 60% and sequestering METH in serum for 2 to 3 hrs. These results suggest that AAV-delivered scFv could be a promising therapy to treat methamphetamine abuse.</p></div

    Comparison of METH and scFv molar concentrations over time.

    No full text
    <p>On day 0, mice were injected with PBS (control treatment), AAV-scFv6H4, or AAV-scFv7F9. Serum scFv6H4 and 7F9 concentrations were measured via ELISA on days 8 and 15. On day 22, mice were treated with METH as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0200060#pone.0200060.g006" target="_blank">Fig 6</a>. Both serum scFv and METH concentrations were measured. Mice treated with either AAV-scFv6H4 or AAV-scFv7F9 showed significantly higher serum concentrations of METH than the control mice (*, p < 0.05; #, p < 0.001). Data points are mean ± SEM (n = 3–4 per group).</p

    A comparison of METH or AMP brain and serum concentrations over time, after a 0.56 mg/kg <i>ip</i> injection of METH, between AAV-scFv6H4, AAV-scFv7F9, and a saline control at day 21 post AAV8 administration.

    No full text
    <p>Mice treated with either AAV-scFv6H4 or AAV-scFv7F9 showed significantly lower brain METH concentrations (a) and significantly higher serum concentrations of METH (b) than the saline-treated mice (*, p < 0.05; #, p < 0.001). There was also a significant decrease in AMP brain concentrations (c) in the AAV-scFv treated groups compared to control mice but no difference in serum AMP concentrations (d). Points are shown as mean ± SEM (n = 3–4 per group).</p

    Schematic of the prototype scFv design.

    No full text
    <p>V<sub>H</sub>, variable heavy region; V<sub>L</sub>, variable light region; Linker, 15 amino acid linker; His6, 6-histidine tag for purification and identification; FLAG, FLAG tag for identification; HMM38, a secretory signal sequence. The HMM38 at the 5’ end of the sequences is cleaved during secretion at the site indicated (triangle).</p
    corecore