5 research outputs found

    Screening of global microbiomes implies ecological boundaries impacting the distribution and dissemination of clinically relevant antimicrobial resistance genes

    No full text
    Understanding the myriad pathways by which antimicrobial-resistance genes (ARGs) spread across biomes is necessary to counteract the global menace of antimicrobial resistance. We screened 17939 assembled metagenomic samples covering 21 biomes, differing in sequencing quality and depth, unevenly across 46 countries, 6 continents, and 14 years (2005-2019) for clinically crucial ARGs, mobile colistin resistance (mcr), carbapenem resistance (CR), and (extended-spectrum) beta-lactamase (ESBL and BL) genes. These ARGs were most frequent in human gut, oral and skin biomes, followed by anthropogenic (wastewater, bioreactor, compost, food), and natural biomes (freshwater, marine, sediment). Mcr-9 was the most prevalent mcr gene, spatially and temporally; bla(OXA-233) and bla(TEM-1) were the most prevalent CR and BL/ESBL genes, but bla(GES-2) and bla(TEM-116) showed the widest distribution. Redundancy analysis and Bayesian analysis showed ARG distribution was non-random and best-explained by potential host genera and biomes, followed by collection year, anthropogenic factors and collection countries. Preferential ARG occurrence, and potential transmission, between characteristically similar biomes indicate strong ecological boundaries. Our results provide a high-resolution global map of ARG distribution and importantly, identify checkpoint biomes wherein interventions aimed at disrupting ARGs dissemination are likely to be most effective in reducing dissemination and in the long term, the ARG global burden

    Quantitative monitoring of nucleotide sequence data from genetic resources in context of their citation in the scientific literature

    No full text
    BACKGROUND: Linking nucleotide sequence data (NSD) to scientific publication citations can enhance understanding of NSD provenance, scientific use, and reuse in the community. By connecting publications with NSD records, NSD geographical provenance information, and author geographical information, it becomes possible to assess the contribution of NSD to infer trends in scientific knowledge gain at the global level. FINDINGS: We extracted and linked records from the European Nucleotide Archive to citations in open-access publications aggregated at Europe PubMed Central. A total of 8,464,292 ENA accessions with geographical provenance information were associated with publications. We conducted a data quality review to uncover potential issues in publication citation information extraction and author affiliation tagging and developed and implemented best-practice recommendations for citation extraction. We constructed flat data tables and a data warehouse with an interactive web application to enable ad hoc exploration of NSD use and summary statistics. CONCLUSIONS: The extraction and linking of NSD with associated publication citations enables transparency. The quality review contributes to enhanced text mining methods for identifier extraction and use. Furthermore, the global provision and use of NSD enable scientists worldwide to join literature and sequence databases in a multidimensional fashion. As a concrete use case, we visualized statistics of country clusters concerning NSD access in the context of discussions around digital sequence information under the United Nations Convention on Biological Diversity

    The COMPARE Data Hubs

    Get PDF
    Data sharing enables research communities to exchange findings and build upon the knowledge that arises from their discoveries. Areas of public and animal health as well as food safety would benefit from rapid data sharing when it comes to emergencies. However, ethical, regulatory and institutional challenges, as well as lack of suitable platforms which provide an infrastructure for data sharing in structured formats, often lead to data not being shared or at most shared in form of supplementary materials in journal publications. Here, we describe an informatics platform that includes workflows for structured data storage, managing and pre-publication sharing of pathogen sequencing data and its analysis interpretations with relevant stakeholders
    corecore