6 research outputs found

    Machine learning in biohydrogen production: a review

    Get PDF
    Biohydrogen is emerging as a promising carbon-neutral and sustainable energy carrier with high energy yield to replace conventional fossil fuels. However, biohydrogen commercial uptake is mainly hindered by the supply side. As a result, various operating parameters must be optimized to realize biohydrogen commercial uptake on a large-scale. Recently, machine learning algorithms have demonstrated the ability to handle large amounts of data while requiring less in-depth knowledge of the system and being capable of adapting to evolving circumstances. This review critically reviews the role of machine learning in categorizing and predicting data related to biohydrogen production. The accuracy and potential of different machine learning algorithms are reported. Also, the practical implications of machine learning models to realize biohydrogen uptake by the transportation sector are discussed. The review indicates that machine learning algorithms can successfully model non-linear and complex interactions between operational and performance parameters in biohydrogen production. Additionally, machine learning algorithms can help researchers identify the most efficient methods for producing biohydrogen, leading to a more sustainable and cost-effective energy source

    Combustion characteristics of lemongrass (Cymbopogon flexuosus) oil in a partial premixed charge compression ignition engine

    Get PDF
    Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI) dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil

    Environmentally benign solid catalysts for sustainable biodiesel production: A critical review

    No full text
    Versatile bio-derived catalysts have been under dynamic investigation as potential substitutes to conventional chemical catalysts for sustainable biodiesel production. This is because of their unique, low-cost benefits and production processes that are environmentally and economically acceptable. This critical review aspires to present a viable approach to the synthesis of environmentally benign and cost-effective heterogeneous solid-base catalysts from a wide range of biological and industrial waste materials for sustainable biodiesel production. Most of these waste materials include an abundance of metallic minerals like potassium and calcium. The different approaches proposed by researchers to derive highly active catalysts from large-scale waste materials of a re-usable nature are described briefly. Finally, this report extends to present an overview of techno-economic feasibility of biodiesel production, its environmental impacts, commercial aspects of community-based biodiesel production and potential for large-scale expansion.</p

    Environmentally benign solid catalysts for sustainable biodiesel production: A critical review

    No full text
    Versatile bio-derived catalysts have been under dynamic investigation as potential substitutes to conventional chemical catalysts for sustainable biodiesel production. This is because of their unique, low-cost benefits and production processes that are environmentally and economically acceptable. This critical review aspires to present a viable approach to the synthesis of environmentally benign and cost-effective heterogeneous solid-base catalysts from a wide range of biological and industrial waste materials for sustainable biodiesel production. Most of these waste materials include an abundance of metallic minerals like potassium and calcium. The different approaches proposed by researchers to derive highly active catalysts from large-scale waste materials of a re-usable nature are described briefly. Finally, this report extends to present an overview of techno-economic feasibility of biodiesel production, its environmental impacts, commercial aspects of community-based biodiesel production and potential for large-scale expansion.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BT/Biocatalysi

    Experimental insight into co-combustion characteristics of oxygenated biofuels in modified DICI engine

    No full text
    The co-combustion of fuel has substantial advantages when compared to normal combustion and it requires very little modification. In this perspective, ethanol supplement co-combustion with biodiesel is proposed. The co-combustion characteristics were studied by manifold induction of vaporized ethanol and direct injection of waste cooking oil biodiesel. A vaporizer system was fabricated to produce vaporized ethanol in a volumetric basis (10% and 20%, respectively). It was revealed from the experiments that with co-combustion of oxygenated biofuels, the combustion advanced and peak pressure shifted to TDC. The pressure rise rate decreased with the increase of vaporized ethanol induction and the maximum rate of pressure rise reduction was noted with biodiesel-20% ethanol induction which was 4% lower than biodiesel-10% vaporized ethanol induction. On the other hand, the maximum rate of heat release rate (60.24 J/degrees CA) was seen in biodiesel with 20% ethanol induction. Furthermore, the co-combustion studies disclosed a two-stage heat release pattern (low temperature and high temperature reactions). It was observed that the increase in ethanol concentration extended low temperature region by 1 degrees crank angle and retarded high temperature region by 3 degrees crank angle
    corecore