15 research outputs found

    Endosulfan Elimination Using Amine-Modified Magnetic Diatomite as an Adsorbent

    No full text
    Pesticides are among the most dangerous developing toxins since they are very hazardous to the environment and threaten human health. In this study, researchers successfully manufactured surface-modified magnetic diatomite (m-DE-APTES) and used them as a sorbent to extract endosulfan from an aqueous solution. There is no other study like it in the scholarly literature, and the results are astounding. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), electron spin resonance (ESR), and surface area measurements were used to analyze magnetic diatomite particles with surface modification. According to the analysis results, magnetic diatomite has a wide surface area and a porous structure. Furthermore, m-DE-APTES has a higher endosulfan adsorption capacity (97.2 mg g-1) than raw diatomite (DE) (16.6 mg g-1). Adsorption statistics agree with Langmuir adsorption isotherm (R 2 = 0.9905), and the adsorption occurred spontaneously at -2.576 kj mol-1 in terms of ΔGo. Finally, m-DE-APTES are a viable alternative adsorbent for removing pesticides from aqueous solutions

    Antibiotic Removal from the Aquatic Environment with Activated Carbon Produced from Pumpkin Seeds

    No full text
    Antibiotics are among the most critical environmental pollutant drug groups. Adsorption is one of the methods used to eliminate these pollutants. In this study, activated carbon was produced from pumpkin seed shells and subsequently modified with KOH. The adsorbent obtained through this procedure was used to remove ciprofloxacin from aqueous systems. Fourier Transform-Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), elemental, X-ray Photoelectron Spectroscopy (XPS), Brunauer–Emmett–Teller (BET) and Zeta analyses were used to characterize the adsorbent. The surface area, in particular, was found to be a very remarkable value of 2730 m2/g. The conditions of the adsorption experiments were optimized based on interaction time, adsorbent amount, pH and temperature. Over 99% success was achieved in removal operations carried out under the most optimal conditions, with an absorption capacity of 884.9 mg·g−1. In addition, the Langmuir isotherm was determined to be the most suitable model for the adsorption interactio

    Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres

    No full text
    Sub-microparticles have many applications in different fields today. In this study, it is aimed to develop hydrophobic microparticles as an alternative to existing methods and to determine the 17β-estradiol adsorption performance of this adsorbent to purify the 17β-estradiol hormone which is found as an endocrine disruptor in environmental waters with high capacity and low cost. In this study, L-phenylalanine containing Poly(HEMA-MAPA) microparticles were synthesized by microemulsion polymerization and used as adsorbent. Microparticles were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) methods. The size of the Poly(HEMA-MAPA) microparticles used was measured as 120-200 nm. Specific surface area and elemental analysis studies were also conducted. While the surface area of the particles was found to be a very high value of 1890 m2/g, the amount of incorporation of MAPA into the polymeric structure was calculated as 0.43 mmol/g. Adsorption studies were carried out in the batch system under different ambient conditions (17β-estradiol concentration, temperature, ionic intensity). The adsorption capacity of Poly(HEMA-MAPA) microparticles was calculated to be 98.4 mg/g. Isotherm models for adsorption interaction were investigated deeply, and it was determined that the adsorption mechanism is suitable for Langmuir isotherm.All the authors of this study would like to express their gratitude to Prof. Dr. Adil Denizli (Hacettepe University) for his valuable contribution

    Investigation of the effectiveness of waste nut shell–based hydrochars in water treatment: a model study for the adsorption of methylene blue

    No full text
    Thousands of tons of walnut and pistachio green outer shells emerge as waste sources. Recycling such wastes in environmental applications is of great importance. In this study, the efciency of waste walnut and pistachio shell–based hydrochars in removing methylene blue (MB), which represents hazardous chemicals, from the water was investigated. Outer green pistachio shell–based hydrochar (PH) and outer green walnut shell–based hydrochar (WH) were characterized by FT-IR, SEM, EDX, TG–DTA, and BET analyses. The adsorption of MB was carried out at diferent concentrations and temperatures using WH and PH, and the adsorption parameters of Langmuir and Freundlich were investigated. The R2 values of PH were calculated as 0.9963, 0.9974, and 0.9950 and of WH adsorbent were calculated as 0.9759, 0.9939, and 0.9981 for the MB adsorption at 298 K, 313 K, and 323 K, respectively. The separation factor (RL) values for WH and PH were calculated as 0.1650≥RL≥0.103, 0.1108≥RL≥0.0177, respectively. Both adsorbents ft the Langmuir model. The ΔH° values of the WH and PH adsorbents were found to be 37.0940 and 22.2493, respectively. Positive ΔH° values indicated that the adsorption was endothermic. The negative ΔG° values of both adsorbents indicated a spontaneous adsorption process. It was shown that waste nut shell–based hydrochars can be used efectively in water treatment

    Petrol İstasyon Çalışanlarında Saç ve Serum Metal Düzeylerinin Belirlenmesi

    No full text
    The aim of this study is to determine some metals in hair and serum samples of petrol station workers. A total of 50 petrol station workers (exposure group) and 50 office workers (control group) were included in the study. Li, Ni, V, Tl, Ti and Sr levels in hair samples and Sr, Ti and V levels in serum samples were measured using the ICP-OES instrument. Li, Ni, V, Tl, Ti and Sr levels in hair samples were found to be significantly higher in the exposure group than in the control group. Ti level in serum samples was found to be significantly higher in the exposure group than in the control group. However, Sr and V levels in serum samples did not differ significantly between the two groups. These results show that petrol station workers are exposed to these toxic metals. For this reason, it may be recommended that petrol station workers should undergo regular biomonitoring and healthcare screening

    Chrome (III) Adsorption On Van Lake Natural Sediment and Modified Sediment (Isotherm and Thermodynamic Analysis Study)

    No full text
    Sediment, nehirlerin, göllerin, koyların, haliçlerin ve okyanusların tabanında yer alan yeryüzü katmanıdır. Dünyanın en büyük soda gölü olması, eşine rastlanmayacak büyüklükte ve güzellikte dipten yükselen güncel karbonat sütunları içermesi ve su seviyesinde yaşanan değişimler, Van Gölü’nü dünyanın en ilginç göllerinden biri yapar. Bu çalışmada Van Gölünden alınan doğal sediment ve asitle (HNO3) aktive edilmiş sedimentlerin ağır metal (Cr3+) ile ilişkisi batch adsorpsiyon tekniği kullanılarak saptanmaya çalışılmıştır. Farklı konsantrasyonlardaki krom (Cr3+) iyonlarının ve pH’ın adsoprsiyon prosesi üzerine etkisi araştırılmıştır. Langmuir, Freundlich, Dubinin-Radushkevich (D-R) ve Temkin adsorpsiyon izotermleri hesaplanmıştır. Hem doğal sediment (DS) hem de asitle modifiye edilmiş sedimentin (MS) Langmuir adsorpsiyon izoterm modeline uyum sağladığı bulunmuştur. Bununla birlikte hem doğal adsorbent hem de asitle modifiye edilmiş adsorbentin termodinamik parametreleri hesaplanmış, ΔG° < 0 değerinin adsoprsiyon prosesinin kendiliğinden gerçekleştiğini göstermiştir. Doğal sedimentin yüzey alanı 7.512 m²/g, asit ile aktive edilmiş sedimentin yüzey alanı 79.456 m²/g tespit edilmiş olup aktivasyon işlemi ile çok yüksek bir yüzey alanı elde edilmiştir. Giles adsorpsiyon izoterm sistemine göre H tipi eğriye uyduğu görülmüştür.Sediment is the earth layer located at the base of rivers, lakes, bays, estuaries and oceans. The fact that it is the largest soda lake in the world, it contains up-to-date carbonate columns, rising from the bottom of unprecedented size and beauty, and changes in the water level make Van Lake one of the fascinating lakes in the world. In this study, the relationship between natural sediment and acid (HNO3) activated sediments taken from Van Lake with heavy metal (Cr3+) was tried to be determined by using batch adsorption technique. The effects of chromium (Cr3+) ions and pH at different concentrations on the adsorption process were investigated. Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin adsorption isotherms were calculated. Both natural sediment (DS) and acid-modified sediment (MS) were found to conform to the Langmuir adsorption isotherm model. However, both the natural adsorbent and the acid-modified adsorbent thermodynamic parameters were calculated, showing that the ∆Go < 0 value adsorption process occurred automatically. The surface area of the natural sediment is 7.512 m²/g, and the surface area of the acid-activated sediment is 79.456 m²/g and a very high surface area has been obtained by the activation process. According to Giles adsorption isotherm system, it was observed that it fits the type H curve

    Magnetic diatomite for pesticide removal from aqueous solution via hydrophobic interactions

    No full text
    Pesticides are highly hazardous chemicals for the environment and human health and their use in agriculture is constantly increasing. Although 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane 4,4′-DDT was banned at developed countries, it is still one of the most dangerous of chemical due to accumulation in the environment. It is known that the toxicity of DDT affects some enzyme systems biochemically. The main motivation of this study is to develop an effective adsorbate for the removal DDT, which was chosen as a model hydrophobic pesticide, out of aqueous systems. For this purpose, the bare diatomite particles were magnetically modified and a hydrophobic ligand attached to enhance its adsorptive and physio-chemical features. Under optimal conditions, a high adsorption capacity, around 120 mg/g with the hydrophobic and magnetic diatomite particles, modification of the diatomite particles reduced average pores diameter whereas surface area and total pore volume increased (around 15-folds). After five consecutive adsorption–desorption cycles, no significant decrease in adsorption capability was observed. The adsorption isotherms (Langmuir, Freundlich, and Flory–Huggins) applied to the data indicated that the adsorption process occurred via monolayer adsorption in an entropy-driven manner. The kinetic data also revealed the quick adsorption process without any diffusion limitation
    corecore