16 research outputs found

    Evaluation of inhaled nitric oxide (iNO) treatment for moderate-to-severe ARDS in critically ill patients with COVID-19: A multicenter cohort study

    Get PDF
    Background: Inhaled nitric oxide (iNO) is used as rescue therapy in patients with refractory hypoxemia due to severe COVID-19 acute respiratory distress syndrome (ARDS) despite the recommendation against the use of this treatment. To date, the effect of iNO on the clinical outcomes of critically ill COVID-19 patients with moderate-to-severe ARDS remains arguable. Therefore, this study aimed to evaluate the use of iNO in critically ill COVID-19 patients with moderate-to-severe ARDS. Methods: This multicenter, retrospective cohort study included critically ill adult patients with confirmed COVID-19 treated from March 01, 2020, until July 31, 2021. Eligible patients with moderate-to-severe ARDS were subsequently categorized into two groups based on inhaled nitric oxide (iNO) use throughout their ICU stay. The primary endpoint was the improvement in oxygenation parameters 24 h after iNO use. Other outcomes were considered secondary. Propensity score matching (1:2) was used based on the predefined criteria. Results: A total of 1598 patients were screened, and 815 were included based on the eligibility criteria. Among them, 210 patients were matched based on predefined criteria. Oxygenation parameters (PaO2, FiO2 requirement, P/F ratio, oxygenation index) were significantly improved 24 h after iNO administration within a median of six days of ICU admission. However, the risk of 30-day and in-hospital mortality were found to be similar between the two groups (HR: 1.18; 95% CI: 0.77, 1.82; p = 0.45 and HR: 1.40; 95% CI: 0.94, 2.11; p= 0.10, respectively). On the other hand, ventilator-free days (VFDs) were significantly fewer, and ICU and hospital LOS were significantly longer in the iNO group. In addition, patients who received iNO had higher odds of acute kidney injury (AKI) (OR (95% CI): 2.35 (1.30, 4.26), p value = 0.005) and hospital/ventilator-acquired pneumonia (OR (95% CI): 3.2 (1.76, 5.83), p value = 0.001). Conclusion: In critically ill COVID-19 patients with moderate-to-severe ARDS, iNO rescue therapy is associated with improved oxygenation parameters but no mortality benefits. Moreover, iNO use is associated with higher odds of AKI, pneumonia, longer LOS, and fewer VFDs

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water

    No full text
    Abstract Environmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route without using hazardous chemicals. Hence, the extracts of mint leaves and orange peels were utilized as reducing agents to synthesize CuO NPs-1 and CuO NPs-2, respectively. The synthesized CuO NPs nanoparticles were characterized using scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), BET surface area, Ultraviolet–Visible spectroscopy (UV–Vis), and Fourier Transform Infrared Spectroscopy (FT-IR). Various parameters of batch experiments were considered for the removal of Pb(II), Ni(II), and Cd(II) using the CuO NPs such as nanosorbent dose, contact time, pH, and initial metal concentration. The maximum uptake capacity (qm) of both CuO NPs-1 and CuO NPs-2 followed the order of Pb(II) > Ni(II) > Cd(II). The optimum qm of CuO NPs were 88.80, 54.90, and 15.60 mg g−1 for Pb(II), Ni(II), and Cd(II), respectively and occurred at sorbent dose of 0.33 g L−1 and pH of 6. Furthermore, isotherm and kinetic models were applied to fit the experimental data. Freundlich models (R2 > 0.97) and pseudo-second-order model (R2 > 0.96) were fitted well to the experimental data and the equilibrium of metal adsorption occurred within 60 min

    Antibacterial and Cytotoxic Potential of Biosynthesized Silver Nanoparticles by Some Plant Extracts

    No full text
    The provision of nanoparticles using biogenic material as a part of green chemistry is an attractive nanotechnology. The current research aimed to test the antimicrobial and cytotoxic efficacy of silver nanoparticles synthesized by extracts of Phoenix dactylifera, Ferula asafetida, and Acacia nilotica as reductant and stabilizing agents in silver nanoparticle formation. Synthesized nanoparticles were evaluated for their antimicrobial activity against Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa and Escherichia coli (Gram-negative) using an agar well diffusion assay. Furthermore, cytotoxic ability was investigated against LoVo cells. The potential phyto-constituents of plant extracts were identified by Fourier-transform infrared spectroscopy (FT-IR) techniques. Field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), and zeta potential analyzed the size and morphology of the biogenic nanoparticles. The current study revealed the ability of the tested plant extract to convert silver ions to silver nanoparticles with an average size that ranged between 67.8 ± 0.3 and 155.7 ± 1.5 nm in diameter. Biogenic AgNPs showed significant antibacterial ability (10 to 32 mm diameter) and anticancer ability against a LoVo cell with IC50 ranged between 35.15–56.73 μg/mL. The innovation of the present study is that the green synthesis of NPs, which is simple and cost effective, provides stable nano-materials and can be an alternative for the large-scale synthesis of silver nanoparticles

    Social media in healthcare: Advantages and challenges perceived by patients at a teaching hospital in eastern province, Saudi Arabia

    No full text
    Aims: This study aimed to determine the types of, the frequency of, and reasons for social media usage by patients. In addition, this study attempts to explore patients' perceptions of the advantages and main challenges associated with using social media in healthcare. Subjects and Methods: This was a cross-sectional study. Questionnaires were distributed to a convenience sample of 400 patients at a teaching hospital in Eastern Province, Saudi Arabia. The data were analyzed by performing descriptive and inferential statistics. Results: Of the 400 patients, 377 patients used social media. Females were more frequent users (60.7%) of social media than males (39.3%). Young patients were more frequent users of social media than older patients. Most patients used social media daily. The patients reported that the main purpose of their usage of social media was to care for their own health. The main advantage was to enable patients to learn about the symptoms of their illness and the method of treatment. A small percentage of patients believed that using social media in healthcare might breach the confidentiality and security of their information, which was the main challenge associated with using social media in healthcare. Conclusion: Social media is revolutionizing healthcare delivery, and its benefits overcome its drawbacks

    Genetic relationship between Hashimoto`s thyroiditis and papillary thyroid carcinoma with coexisting Hashimoto`s thyroiditis.

    No full text
    Hashimoto's thyroiditis (HT) is present in the background of around 30% of papillary thyroid carcinomas (PTCs). The genetic predisposition effect of this autoimmune condition is not thoroughly understood. We analyzed the microarray expression profiles of 13 HT, eight PTCs with (w/) coexisting HT, six PTCs without (w/o) coexisting HT, six micro PTCs (mPTCs), and three normal thyroid (TN) samples. Based on a false discovery rate (FDR)-adjusted p-value ≤ 0.05 and a fold change (FC) > 2, four comparison groups were defined, which were HT vs. TN; PTC w/ HT vs. TN; PTC w/o HT vs. TN; and mPTC vs. TN. A Venn diagram displayed 15 different intersecting and non-intersecting differentially expressed gene (DEG) sets, of which a set of 71 DEGs, shared between the two comparison groups HT vs. TN ∩ PTC w/ HT vs. TN, harbored the relatively largest number of genes related to immune and inflammatory functions; oxidative stress and reactive oxygen species (ROS); DNA damage and DNA repair; cell cycle; and apoptosis. The majority of the 71 DEGs were upregulated and the most upregulated DEGs included a number of immunoglobulin kappa variable genes, and other immune-related genes, e.g., CD86 molecule (CD86), interleukin 2 receptor gamma (IL2RG), and interferon, alpha-inducible protein 6 (IFI6). Upregulated genes preferentially associated with other gene ontologies (GO) were, e.g., STAT1, MMP9, TOP2A, and BRCA2. Biofunctional analysis revealed pathways related to immunogenic functions. Further data analysis focused on the set of non-intersecting 358 DEGs derived from the comparison group of HT vs. TN, and on the set of 950 DEGs from the intersection of all four comparison groups. In conclusion, this study indicates that, besides immune/inflammation-related genes, also genes associated with oxidative stress, ROS, DNA damage, DNA repair, cell cycle, and apoptosis are comparably more deregulated in a data set shared between HT and PTC w/ HT. These findings are compatible with the conception of a genetic sequence where chronic inflammatory response is accompanied by deregulation of genes and biofunctions associated with oncogenic transformation. The generated data set may serve as a source for identifying candidate genes and biomarkers that are practical for clinical application

    Integration of Ultrastructural and Computational Approaches Reveals the Protective Effect of Astaxanthin against BPA-Induced Nephrotoxicity

    No full text
    Background: Bisphenol A (BPA) is an environmental contaminant that can induce deleterious organ effects. Human Cytochrome P450 CYP2C9 enzyme belongs to the essential xenobiotic-metabolizing enzymes, producing ROS as a byproduct. Astaxanthin (ATX) is a powerful antioxidant that protects organs and tissues from the damaging effects of oxidative stress caused by various diseases. Aim of the study: This study investigated the possible protective impacts of ATX against BPA-induced nephrotoxicity and its underlying mechanism. Materials and methods: Kidney tissues were isolated and examined microscopically from control, protected, and unprotected groups of rats to examine the potential protective effect of ATX against nephrotoxicity. Moreover, a molecular dynamic (MD) simulation was conducted to predict the performance of ATX upon binding to the active site of P450 CYP2C9 protein receptor as a potential mechanism of ATX protective effect. Results: Implemented computational methods revealed the possible underlying mechanism of ATX protection; the protective impact of ATX is mediated by inhibiting P450 CYP2C9 through binding to its dimeric state where the RMSF value for apo-protein and ATX-complex system were 5.720.57 and 1.040.41, respectively, implicating the ATX-complex system to have lesser variance in its residues, leading to the prevention of ROS excess production, maintaining the oxidant-antioxidant balance and re-establishing the proper mitochondrial functionality. Furthermore, the experimental methods validated in silico outcomes and revealed that ATX therapy effectively restored the typical histological architecture of pathological kidney tissues. Conclusions: ATX prevents BPA-induced nephrotoxicity by controlling oxidative imbalance and reversing mitochondrial dysfunction. These outcomes shed new light on the appropriate use of ATX as a treatment or prophylactic agent for these severe conditions

    Investigation of barium sulphate shielding during panoramic radiography

    No full text
    Abstract Background Radiation shielding in radiology has historically been achieved with lead; however, there has been an increasing demand for radiation shielding to be more environmentally friendly. Barium has shown promise as a substitute in many radiology applications. This study aims to investigate a barium sulphate shield in protecting the thyroid and the eye lens during panoramic radiography. Methods During a simulated panoramic examination, an anthropomorphic phantom and a solid-state detector measured the radiation dose to the surface thyroid and the eye lens. The measurements were taken using no shield and a barium sulphate shield. A Welch's T-test was employed to compute the shield's effect on radiation. Two radiologists assessed the image quality with and without the thyroid shields. Results The dose reduction was between 66 and 75% for the barium shield at the thyroid. The dose reduction ranged between 15 and 61% in the eye region. Images using a barium shield were deemed adequate for diagnostic interpretation. Conclusions Barium shields effectively reduce the radiation dose in the thyroid region during panoramic radiography without degrading image quality. The dose reduction depends on the tube voltage and the area of interest
    corecore