10 research outputs found
Compressive strength capacity of light gauge steel composite columns
AbstractThe axial compressive strength capacity of concrete-filled light gauge steel composite columns was assessed through an experimental program involving twelve long and fourteen stub columns with width-to-thickness ratio of 125 for the encasing steel section. A comparison between concrete-only and confined stub columns demonstrated that the stub column experiences an increase of strength of up to 16% due to confinement. The compressive strength contribution of the light gauge steel section was limited by local buckling. Specifically, the steel-only stub column sections lacking the concrete core experienced, on average, approximately 33% of its full compressive strength. The full-scale composite columns illustrated that the axial compressive strength capacity was controlled by end bearing capacity and local buckling of the light gauge steel. The axial compression strength capacity of the full-scale composite columns was satisfactorily predicted based on end bearing resistance of the concrete core and local strains in the light gauge steel. Furthermore, the 33% strength contribution established from the steel-only sections provided a satisfactory lower bound estimate for the calculation of axial compressive strength
A Predictive Study on the Chemical Relationship between Human Kidney Function and Hyperglycemia
Type 2 diabetes mellitus (DM) affects 18-20% of adults over 65 years old globally. Diabetic kidney disease (DKD) is one of the most common and dangerous complications of type 2 DM, impacting about one-third of patients. In addition to the pancreas, liver, intestines, and adipose tissue, the kidneys also play an important role in blood sugar regulation through gluconeogenesis and glucose reabsorption. In this review article, an interdisciplinary group of experts in endocrinology, diabetology, and nephrology discuss the relationship between diabetes and kidney disease. They address diagnosis, challenges with glycemic control, and potential treatments for different stages of DKD. Glucose homeostasis is severely disrupted in DKD patients, putting them at high risk of both hyperglycemia and hypoglycemia. Abnormal high and low blood sugar levels associate with higher morbidity and mortality in this population. Factors increasing hypoglycemia risk include reduced kidney gluconeogenesis, altered metabolic pathways, and decreased insulin clearance. Decreased glucose filtration/excretion and inflammation-induced insulin resistance predispose to hyperglycemia. Careful blood sugar monitoring and control tailored to diabetes patients with kidney disease is required to avoid hypoglycemic and other glucose disorders. Understanding the physiology and pathophysiology of DKD has become essential for all specialties treating diabetic patients. Disseminating this knowledge and evidence will be vital to advance research and improve care for these patients
Enc-DNS-HTTP: Utilising DNS Infrastructure to Secure Web Browsing
Online information security is a major concern for both users and companies, since data transferred via the Internet is becoming increasingly sensitive. The World Wide Web uses Hypertext Transfer Protocol (HTTP) to transfer information and Secure Sockets Layer (SSL) to secure the connection between clients and servers. However, Hypertext Transfer Protocol Secure (HTTPS) is vulnerable to attacks that threaten the privacy of information sent between clients and servers. In this paper, we propose Enc-DNS-HTTP for securing client requests, protecting server responses, and withstanding HTTPS attacks. Enc-DNS-HTTP is based on the distribution of a web server public key, which is transferred via a secure communication between client and a Domain Name System (DNS) server. This key is used to encrypt client-server communication. The scheme is implemented in the C programming language and tested on a Linux platform. In comparison with Apache HTTPS, this scheme is shown to have more effective resistance to attacks and improved performance since it does not involve a high number of time-consuming operations
Enc-DNS-HTTP: Utilising DNS Infrastructure to Secure Web Browsing
Online information security is a major concern for both users and companies, since data transferred via the Internet is becoming increasingly sensitive. The World Wide Web uses Hypertext Transfer Protocol (HTTP) to transfer information and Secure Sockets Layer (SSL) to secure the connection between clients and servers. However, Hypertext Transfer Protocol Secure (HTTPS) is vulnerable to attacks that threaten the privacy of information sent between clients and servers. In this paper, we propose Enc-DNS-HTTP for securing client requests, protecting server responses, and withstanding HTTPS attacks. Enc-DNS-HTTP is based on the distribution of a web server public key, which is transferred via a secure communication between client and a Domain Name System (DNS) server. This key is used to encrypt client-server communication. The scheme is implemented in the C programming language and tested on a Linux platform. In comparison with Apache HTTPS, this scheme is shown to have more effective resistance to attacks and improved performance since it does not involve a high number of time-consuming operations
Ensuring Data Integrity Scheme Based on Digital Signature and Iris Features in Cloud
Cloud computing is a novel paradigm that allows users to remotely access their data through web- based tools and applications. Later, the users do not have the ability to monitor or arrange their data. In this case, many security challenges have been raised. One of these challenges is data integrity. Contentiously, the user cannot access his data directly and he could not know whether his data is modified or not. Therefore, the cloud service provider should provide efficient ways for the user to ascertain whether the integrity of his data is protected or compromised. In this paper, we focus on the problem of ensuring the integrity of data stored in the cloud. Additionally, we propose a method which combines biometric and cryptography techniques in a cost-effective manner for data owners to gain trust in the cloud. We present efficient and secure integrity based on the iris feature extraction and digital signature. Iris recognition has become a new, emergent approach to individual identification in the last decade. It is one of the most accurate identity verification systems. This technique gives the cloud user more confidence in detecting any block that has been changed. Additionally, our proposed scheme employs user’s iris features to secure and integrate data in a manner difficult for any internal or external unauthorized entity to take or compromise it. Iris recognition is an internal organ that is well protected against damage and wear by a highly transparent and sensitive membrane. Extensive security and performance analysis show that our proposed scheme is highly efficient and provably secure
Lightweight Integrity Preserving Scheme for Secure Data Exchange in Cloud-Based IoT Systems
The information obtained from external sources within the cloud and the resulting computations are not always reliable. This is attributed to the absence of tangible regulations and information management on the part of the information owners. Although numerous techniques for safeguarding and securing external information have been developed, security hazards in the cloud are still problematic. This could potentially pose a significant challenge to the effective adoption and utilization of cloud technology. In terms of performance, many of the existing solutions are affected by high computation costs, particularly in terms of auditing. In order to reduce the auditing expenses, this paper proposes a well-organised, lightweight system for safeguarding information through enhanced integrity checking. The proposed technique implements a cryptographic hash function with low-cost mathematic operations. In addition, this paper explores the role of a semi-trusted server with regard to smart device users. This facilitates the formal management of information prior to distribution through the IoT-cloud system. Essentially, this facilitates the validation of the information stored and exchanged in this environment. The results obtained show that the proposed system is lightweight and offers features such as a safeguarding capability, key management, privacy, decreased costs, sufficient security for smart device users, one-time key provision, and high degree of accuracy. In addition, the proposed method exhibits lower computation complexity and storage expenses compared with those of other techniques such as bilinear map-based systems
Lightweight Secure Message Delivery for E2E S2S Communication in the IoT-Cloud System
The continuous increase in the use of smart devices and the need for E2E smart2smart (S2S) services in IoT systems play effective and contemporary roles in the field of communication, and a large amount of resources is required. Thus, IoTs and cloud computing must be integrated. One of the results of this integration is the increase in the number of attacks and vulnerabilities in the E2E S2S message delivery service of such an IoT-cloud system. However, none of the traditional security solutions can be sufficiently regarded as a secure and lightweight mechanism for ensuring that the security requirements for E2E S2S message transmission in the IoT-cloud system are fulfilled. This work aims to provide an efficient and secure, lightweight E2E S2S message delivery function, which includes the E2E S2S secure key and biometric parameter exchange function, a bio-shared parameter and bio-key generation function, secure lightweight E2E S2S communication negotiation and secure E2E S2S lightweight message delivery. The secure, lightweight cryptographic communication procedure is negotiated between a pair of smart devices during each E2E session to minimize the power consumption required of limited-energy devices. Such a negotiation process prevents known attacks by providing responsive mutual authentication. Lightweight message delivery by the two smart devices can satisfy the basic security requirements of E2E communication and ensure that the computational cost required for a real-time system is as low as possible